Classical Mechanics

Module Name :	Clasical Mechanics				
Module Level :	Undergraduate				
Code:	32255014				
Sub-heading, if applicable :	32233014				
Classes, if applicable :					
Semester:	3 rd				
Module coordinator :	Dr.rer.nat. Bambang Heru Iswanto, M.Si				
Lecturer(s):	Dr.rer.nat. Bambang Heru Iswanto, M.Si				
Lecturer(s).	Dr. Hadi Nasbey, S.Pd., M.Si				
	Dewi Muliyati, S.Pd., M.Si, M.Sc				
	Riser Fahdiran, M.Si.				
	Dr.Firmanul Catur Wibowo, M.Pd.				
	Upik Rahma Fitri, M.Pd.				
Language:	Indonesian				
Classification within the	Compulsory course				
curriculum:					
Type of Teaching	Contact hours per week	Class Size			
	during the semester				
Lecture (Expository,	200 minutes	40			
discussion, exercise)					
Workload	Total workload of this course 181,3 hours (6 ECTS) per semester				
	which consist of 53,4 hours (1.76ECTS) classroom activity, 64				
	hours (2,12 ECTS) structured task, and 64 hours (2,12 ECTS) per				
	semester.				
Credit points:	6 ECTS				
Prerequisite course(s):	-				
Course Outcomes :	After taking this course the stude	ent have ability to :			
	_	cepts of fundamental concepts of			
	vectors and apply them to explain particle motion				
	CLO94. Apply basic concepts of Newtonian mechanics to				
	explain particle motion Newtonian mechanics to explain				
	straight motion of particles				
	CLO95. Analyze oscillatory motion and the energy that				
	accompanies it				
	CLO96. Analyze general motion in three				
	CLO97. Analyze the motion of bodies by the in planetary				
	orbital systems				
	CLO98. Analyze the dynamics of particle systems				
	CLO99. Identify the motion of bodies in non-inertial				
	reference systems				
	CLO100. Mechanics of Objects				
	CLO101. Apply the concepts of fundamental concepts of Lagrangian mechanics to particle dynamics				
Content:	1. Vectors and Kinematics				
Content. 1. Vectors and Kinematics					

- Vectors and their derivatives
- Vector and scalar products
- Particle position vectors
- Velocity and acceleration in cartesian and polar coordinate systems
- Velocity and acceleration in cylindrical and spherical coordinate systems
- 2. Newtonian Mechanics
 - Newtonian Mechanics and its scope
 - Newton's Laws of Motion
 - Straight motion by a constant force
 - Position-dependent force
 - Velocity-dependent force
 - Terminal velocity
- 3. Oscillatory Motion
 - Harmonic motion
 - Energy in harmonic motion
 - Damped oscillatory motion
 - Resonance
 - Mechanical analogy to the electric oscillator
- 4. General motion of particles
 - General principles of motion
 - Principle of effort
 - Conservative force
 - Split-type forces: bullet motion
 - Harmonic oscillator in three dimensions
- 5. Central Force
 - Gravitational force
 - Potential energy in a gravitational field
 - Conservation theorem
 - Equation of motion of particles in the central force
 - Planetary orbits in the central force
 - Kepler's laws of plane motion
- 6. Dynamics of Particle Systems
 - Linear momentum of systems
 - Angular momentum and kinetic energy of systems
 - Motion of two interacting bodies
 - Collisions
- 7. Non-Inertial Reference Systems
 - Motion of bodies in accelerated coordinate systems

	 Particle dynamics in coordinate systems rotating coordinate system Mechanics of Rigid Bodies Center of mass of rigid bodies Moment of inertia of a body Angular momentum of a rigid body Lagrangian Mechanics Variational principle Generalized coordinate system Lagrange equation of motion and the law of conservation conservation Application of Lagrange formalism to coupled motion problems 				
		 Constraine multiplier 	ed forces: the conceptsFree harmonic osci	llation, damped	
Study/exam achievements:	Examination are conducted as unit test, as following				
	No	Assesment Object	Assesment Technique	Weight	
	1	Individual Assignment/Quiz	Written test	30%	
	2	Seminar	Presentation	35%	
	3	Final Test	Written test	35%	
Media :	Laptop/Computer, Epsilon (Study Program E-Learning), University LMS, Projector, Video Conference Software: Zoom Meeting, Software according to the topic simulation				
Literatures:	 Fowles G.R. dan Cassiday, G.L. (2005) Analytical Mechanics, 2nd Ed., Thomson Brooks Cole. Sumber Lainnya Kleppner dan Kolenkow (2014) An Introduction to Mechanics, 2nd Ed., Cambridge University Press. Thornton, S.T., dan Marion, J. B. (2004): Classical Dynamics of Particles & Systems, 5th Edition, Thomson 				
		Brooks Cole			