Classical Mechanics | Module Name : | Clasical Mechanics | | | | | |------------------------------------|---|----------------------------------|--|--|--| | Module Level : | Undergraduate | | | | | | Code: | 32255014 | | | | | | Sub-heading, if applicable : | 32233014 | | | | | | Classes, if applicable : | | | | | | | Semester: | 3 rd | | | | | | Module coordinator : | Dr.rer.nat. Bambang Heru Iswanto, M.Si | | | | | | Lecturer(s): | Dr.rer.nat. Bambang Heru Iswanto, M.Si | | | | | | Lecturer(s). | Dr. Hadi Nasbey, S.Pd., M.Si | | | | | | | Dewi Muliyati, S.Pd., M.Si, M.Sc | | | | | | | Riser Fahdiran, M.Si. | | | | | | | Dr.Firmanul Catur Wibowo, M.Pd. | | | | | | | Upik Rahma Fitri, M.Pd. | | | | | | Language: | Indonesian | | | | | | Classification within the | Compulsory course | | | | | | curriculum: | | | | | | | Type of Teaching | Contact hours per week | Class Size | | | | | | during the semester | | | | | | Lecture (Expository, | 200 minutes | 40 | | | | | discussion, exercise) | | | | | | | Workload | Total workload of this course 181,3 hours (6 ECTS) per semester | | | | | | | which consist of 53,4 hours (1.76ECTS) classroom activity, 64 | | | | | | | hours (2,12 ECTS) structured task, and 64 hours (2,12 ECTS) per | | | | | | | semester. | | | | | | Credit points: | 6 ECTS | | | | | | Prerequisite course(s): | - | | | | | | Course Outcomes : | After taking this course the stude | ent have ability to : | | | | | | _ | cepts of fundamental concepts of | | | | | | vectors and apply them to explain particle motion | | | | | | | CLO94. Apply basic concepts of Newtonian mechanics to | | | | | | | explain particle motion Newtonian mechanics to explain | | | | | | | straight motion of particles | | | | | | | CLO95. Analyze oscillatory motion and the energy that | | | | | | | accompanies it | | | | | | | CLO96. Analyze general motion in three | | | | | | | CLO97. Analyze the motion of bodies by the in planetary | | | | | | | orbital systems | | | | | | | CLO98. Analyze the dynamics of particle systems | | | | | | | CLO99. Identify the motion of bodies in non-inertial | | | | | | | reference systems | | | | | | | CLO100. Mechanics of Objects | | | | | | | CLO101. Apply the concepts of fundamental concepts of Lagrangian mechanics to particle dynamics | | | | | | Content: | 1. Vectors and Kinematics | | | | | | Content. 1. Vectors and Kinematics | | | | | | - Vectors and their derivatives - Vector and scalar products - Particle position vectors - Velocity and acceleration in cartesian and polar coordinate systems - Velocity and acceleration in cylindrical and spherical coordinate systems - 2. Newtonian Mechanics - Newtonian Mechanics and its scope - Newton's Laws of Motion - Straight motion by a constant force - Position-dependent force - Velocity-dependent force - Terminal velocity - 3. Oscillatory Motion - Harmonic motion - Energy in harmonic motion - Damped oscillatory motion - Resonance - Mechanical analogy to the electric oscillator - 4. General motion of particles - General principles of motion - Principle of effort - Conservative force - Split-type forces: bullet motion - Harmonic oscillator in three dimensions - 5. Central Force - Gravitational force - Potential energy in a gravitational field - Conservation theorem - Equation of motion of particles in the central force - Planetary orbits in the central force - Kepler's laws of plane motion - 6. Dynamics of Particle Systems - Linear momentum of systems - Angular momentum and kinetic energy of systems - Motion of two interacting bodies - Collisions - 7. Non-Inertial Reference Systems - Motion of bodies in accelerated coordinate systems | | Particle dynamics in coordinate systems rotating coordinate system Mechanics of Rigid Bodies Center of mass of rigid bodies Moment of inertia of a body Angular momentum of a rigid body Lagrangian Mechanics Variational principle Generalized coordinate system Lagrange equation of motion and the law of conservation conservation Application of Lagrange formalism to coupled motion problems | | | | | |--------------------------|--|---|---|-----------------|--| | | | | | | | | | | Constraine multiplier | ed forces: the conceptsFree harmonic osci | llation, damped | | | Study/exam achievements: | Examination are conducted as unit test, as following | | | | | | | No | Assesment
Object | Assesment
Technique | Weight | | | | 1 | Individual
Assignment/Quiz | Written test | 30% | | | | 2 | Seminar | Presentation | 35% | | | | 3 | Final Test | Written test | 35% | | | Media : | Laptop/Computer, Epsilon (Study Program E-Learning), University LMS, Projector, Video Conference Software: Zoom Meeting, Software according to the topic simulation | | | | | | Literatures: | Fowles G.R. dan Cassiday, G.L. (2005) Analytical
Mechanics, 2nd Ed., Thomson Brooks Cole. Sumber
Lainnya Kleppner dan Kolenkow (2014) An Introduction to
Mechanics, 2nd Ed., Cambridge University Press. Thornton, S.T., dan Marion, J. B. (2004): Classical
Dynamics of Particles & Systems, 5th Edition, Thomson | | | | | | | | Brooks Cole | | | |