Statistical physics

Modulo Nama	Statistical physics				
Module Name :	Statistical physics				
Module Level :	Undergraduate				
Code :	32256043				
Sub-heading, if applicable :					
Classes, if applicable :	ath				
Semester :	7 th				
Module coordinator :	Dr. Anggara Budi Susila, M.Si.				
Lecturer(s) :	Dr. Anggara Budi Susila, M.Si.				
	Dr. Hadi Nasbey, S.Pd., M.Si				
Language :	Indonesian				
Classification within the	Compulsory course				
curriculum :					
Type of Teaching	Contact hours per week	Class Size			
	during the semester				
Lecture (Expository,	150 minutes	40			
discussion, exercise)					
Workload	Total workload of this course 136 hours (4.5 ECTS) per semester				
	which consist of 40 hours (1.32 ECTS) classroom activity, 48				
	hours (1.59 ECTS) structured task, and 48 hours (1.59 ECTS) per				
	semester.				
Credit points :	4,5 ECTS				
Prerequisite course(s) :	-				
Course Outcomes :	After taking this course the stud	After taking this course the student have ability to :			
	CLO144. Students have an	understanding of binomial and			
	polynomial systems, probability distributions discrete and				
	continuous, Poisson and Gauss equations, micro states, macro				
	states, Maxwell-Boltzmann distribution, Bose-Einstein				
	distribution, Fermi-Dirac distribution. Maxwell-Boltzmann				
	distribution, Bose-Einstein distribution, Fermi-Dirac				
	distribution. Able to examine the concepts and theories of				
	thermodynamics.				
Content :	1. Distribution function and probability				
	Discrete Distribu				
		ion function of binomial form			
	 Continuous distribution function Probability of discrete distribution function 				
	Probability of discrete distribution function				
		ntinuous distribution function			
	Poisson equation				
	• Gauss equation				
	2. Thermodynamic coordinates and thermodynamic				
	potential				
	Thermodynamic coordinates				
	Thermodynamic	notential			

	 Gibbs paradox differential equation
	 Differential equation of enthalpy
	 Inner energy differential equation
	Helmholtz energy function differential equation
	3. Gas Kinetics Theory
	• Particle flux
	• Rate relationship with pressure and temperature
	• Deviations from the ideal nature of the equation
	of state: \checkmark According to Clausius According to
	Van der Walls
	4. Velocity and rate distribution of gas particles
	• Rate and velocity distribution according to
	Maxwell
	• Rate and velocity distribution according to
	MaxwellBoltzmann
	• Energy distribution
	• Energy equipartition principle
	• Thermal capacity at fixed volume
	• Thermal capacity at fixed pressure
	Laplace's constant
	5. Transport phenomenon
	Collision cross section
	• Mean free path
	Viscosity coefficient
	Diffusion coefficient
	• Transport equation
	6. Maxwell-Boltzmann statistics
	• Macro and micro states in the system
	Maxwell-Boltzmann particle distribution
	• Partition function
	• Entropy and Helmholtz function in view of
	statistical mechanics
	7. Bose-Einstein statistics (Bozon)
	Bose-Einstein distribution
	Blackbody radiance
	• Wien's shift law
	• Stefan-Boltzmann law
	8. Fermi-Dirac statistics (fermions)
	Fermi-Dirac distribution
	• Electrons in solids
	Canonical ensemble
	• Microcanonical ensemble and its limitations
	• Canonical ensembles and non-ideal gases
Study/exam achievements:	Examination are conducted as unit test, as following

	No	Assesment Object	Assesment Technique	Weight	
	1	Assignment/Quizzes/Project	Written Test	20%	
	2	Midterm Test	Written Test	40%	
	3	Final Test	Written Test	40%	
Media :	Lapto	Laptop/Computer, Epsilon (Study Program E-Learning),			
	University LMS, Projector, Video Conference Software: Zoom				
	Meeting, Reference Book				
Literatures :	 A.J. Pointon, An Introduction to Statistical Physics, Longman 1967. F.W. Sears & G.L. Salinger, Thermodinamics Kinetic Theory and Statistical Thermodinamics, Addison Welley, New York, 1975 F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, Inc, 1985 A. Mikrajuddin, Fisika Statistik untuk Mahasiswa MIPA, Diktat Kuliah ITB, 2009. M.G.V. Rosser, An Introduction to Statistical Physics, Chicester Brisbane, Toronto, New York, Elis Horwood Publisher. 				