Advanced Real Analysis

Module designation	Advanced Real Analysis
Semester(s) in which the module is	2 (even semester)
taught	
Person responsible for the	Dr. Lukita Ambarwati, S.Pd., M.Si.
module	Dr. Yudi Mahatma, M.Si.
Language	Bahasa Indonesia
Relation to curriculum	Compulsory
Teaching methods	Teaching methods used in this course are:
	 Lecture (i.e., small group discussions and project-based learning)
	 Structured assignments (i.e., project development and presentations)
Workload (incl. contact hours,	For this course, students required to meet a minimum of 154,66
self-study hours)	hours in one semester, which consist of
	26,66 hours for lecture
	64 hours for structured assignments
	64 hours for private study
Credit points	2 CP = 5,2 ECTS
Required and recommended prerequisites for joining the module	Completing Real Analysis course
Module objectives/intended learning outcomes	Students are able to:
3	1. understand the concepts of function continuity, uniform
	continuity, and the definition of Gauge.
	2. explain monotone functions and inverse functions.
	3. understand the concept of derivatives, the Mean Value
	Theorem, and its applications.
	4. understand L'Hospital's Rule and Taylor's Theorem.
	5. understand the Riemann Integral concept.
	6. understand the Fundamental Theorem of Calculus and apply it.
Constant	7. Understand the generalized klemann integral concept.
Content	1 Continue fontion of formatic the second
	1. Continuous function, uniform continuity, gauge
	2. Monotone function, inverse function
	 Derivative of a function, Mean Value Theorem, L'Hospital's Rules
	4. Taylor's Theorem
	5. Riemann Integral
	6. The Fundamental Theorem of Calculus
	7. The Generalized Riemann Integral
Examination forms	Assessment of the learning process according to the following
	components:
	Midterm Exam 30%, Final Exam 30%, and assignment 40%
Study and examination	Study and examination requirements:
requirements	Students should have attended all lectures and submitted all
	scheduled individual and group assignments prior to the final
	examination.
keading list	Main Kererence
	Analysis 4 th ed. John Wiley & Sons.

15