

UNIVERSITAS NEGERI JAKARTA FACULTY OF MATHEMATICS AND NATURAL SCIENCES CHEMISTRY STUDY PROGRAM

Jl. Rawamangun Muka, RT 11/RW 14, Rawamangun, Pulo Gadung, East Jakarta City, Special Capital Region of Jakarta 13220 Phone/Fax: (021) 4894909, E-mail: <u>kimia@unj.ac.id</u>, <u>http://fmipa.unj.ac.id/kimia/</u>

Bachelor in Chemistry

MODULE HANDBOOK

Module name:	Green Chemistry
Module level, if applicable:	Undergraduate
Code:	33250202
Sub-heading, if applicable:	-
Classes, if applicable:	-
Semester:	Odd semester
Module coordinator:	Dr. Fera Kurniadewi, M.Si
Lecturer(s):	Prof. Dr. Erdawati, M.Sc.
Language:	Bahasa Indonesia
Classification within the curriculum:	Elective courses
Class Size	20
Type of Teaching	In class activity : Team Based Project and Project based Learning Structured activity : Group Discussion using WorkSheet Independent activity : Individual task
Teaching format / class hours	Learning activity can be carried out in the form of :
per week	1 Lecture or students response
	a Face to face : 50 minutes/SKS
	b. Structured activity : 60 minutes/SKS
	c. Independent activity : 60 minutes/SKS
Workload	 1 CU (SKS) for bachelor degree equal to 4 work hours per week or 170 minutes. 2x50 minutes face to face, 2x60 minutes structured tasks,
	2x60 minutes independent learning,
	for 16 weeks (including midterm and final examination),
Cradit points:	a total of 90.5 hours/semester.
	2 SNS (3 EC15)
Prerequisite course(s):	Analytical Chemistry

	After taking this course the students have ability to:								
	CLO 1. Apply various methods to measure the greenness of a chemical								
	rea	reaction							
	CL	CLO 2. Classifying the components of NADES pelarut solvent							
Course Outcomes:	cor	components							
	CL	CLO 3. Distinguishing the method of making NADES							
	CLO 4. Applying NADES solvent for extraction								
	CLO 5. Determining the environmental impact of a chemical process								
Content:	1	Creen Chemistry History							
Content.	2	Green Chemistry Principal							
	3 Analysis of the Greenness Level of chemical processes based on the								
	ecoscale value								
	4.	Analy	sis of th	e Greenness Level of	f chemical proces	ses based on the			
	Gr	een Ch	nemistry	Matrix	-				
	5.	Analy	sis of th	e Greenness Level of	f chemical proces	ses based on the			
	Green Star Matrix6. NADES eco-friendly solvent								
	 Presentation of the extraction task with NADES solvent LCA Analysis Description of LCA 								
	9.	Solve	ntation ta	ity Analysis					
	11. Green chemistry-based product manufacture								
Study/exam achievements:	Ex	Examinations are conducted as Unit Tests. There are twO-unit tests.							
	each covers 4-5 chapters. The final marks are derived from unit tests								
	(60	(60%) and structured tasks (40%).							
		No	С	Assesment	Assessment	Weight			
			0	Object	Techniques				
		1	CLO	a. Individual	Written test	30%			
			1-5	assignments					
				b. UTS		30%			
				c. UAS		30%			
				d. Participation		10%			
				•	Total	100%			
	Power point presentation, Laptop, Whiteboard, Zoom, Google								
Media	Cla	Classroom, Ms. Teams							

Literatures	1.	Agnieszka Gałuszka, Piotr Konieczka, Zdzisław M
		Migaszewski, Jacek Namies ´nik, 2012, . Analytical Eco-Scale for
		assessing the greenness of analytical procedures. Trends in
		Analytical Chemistry, 37, 2012
	2.	Gabriela T.C. Ribeiro, Dominique A. Costa & Adélio A.S.C.
		Machado.2010. "Green Star": a holistic Green Chemistry metric
		for evaluation of teaching laboratory experiments. <i>Green</i>
		Chemistry Letters and Reviews, 3:2, 149-159.
	3.	MarekTobiszewski, JacekNamieśnik.2015.Scoring of solvents
		used in analytical laboratories by their toxicological and exposure
		hazards Ecotoxicology and EnvironmentalSafety120:169-173
	4.	Dariane Trivisiol da Silvaa, Roberson Paulettob, Sabrina da Silva
		Cavalheirob Vivian Caetano Bochic Eliseu Rodriguesd. Julia
		Webere, Cristiane de Bona da Silvae Fernando Dal Pont
		Morissof, Milene Teixeira Barciab, Tatiana Emanuellib.
		2020Natural deep eutectic solvents as a biocompatible tool for
		the extraction of blueberry anthocyanins. <i>Journal of Food</i>
		Composition and Analysis 89 : 103470
	5.	Kenneth C. Hoffman, Andrew P. Dicks. 2020. Shifting the
		paradigm of chemistry education by Greening the high school
		laboratory . Sustainable Chemistry and Pharmacy 16 :100242
	6.	M. Gabriela T.C. Ribeiro, Dominique A. Costa & Adélio A.S.C.
		Machado. "Green Star": a holistic Green Chemistry metric for
		evaluation of teaching laboratory experiments. <i>Green Chemistry</i>
		Letters and Reviews
	7.	Justyna Płotka-Wasylka, Vasil Simeonov, Jacek
		Namiesnik.2016. An in situ derivatization – dispersive liquid-
		liquid microextraction ' combined with gas-chromatography –
		mass spectrometry for determining biogenic amines in home-
		made fermented alcoholic drinks, <i>Journal of Chromatography A</i>
		1453 :1-18
	8.	Myrsini Papageorgiou, Dimitra Lambropoulou, Calum Morrison,
		Jacek Namieśnik and Justyna Płotka-Wasylka, Direct solid phase
		microextraction combined with gas chromatography - mass
		spectrometry for the determination of biogenic amines in wine,
		Talanta,183 : 276-282

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10	PLO11	PLO12
CO1						V	V					
CO2						V	V					
CO3						V	V					
CO4						V	V					
CO5						V	V					

PLO and CO mapping