

MINISTRY EDUCATION, CULTURE, RESEARCH AND TECHNOLOGY UNIVERSITAS NEGERI JAKARTA FACULTY MATHEMATICS AND KNOWLEDGE KNOWLEDGE

MAJOR PHYSICS & EDUCATION PHYSICS

Campus A UNJ Rawamangun, G-d. Hasjim Asj'arie Lt. 5 Jl. Rawamangun Advance No. 1 Jakarta 13220Tel. 021-29266285/29266284

	EXAM MIDDLE SEMESTER 118	
	Calculus II	
	Date and time	Tuesday, 28 March 2023
	O'clock	08.00-09.40
	Study Program	Physics And Pend. Physics
	Nature of the Exam	Closed Book
	Lecturer	Prof. Dr. Mangasi A. Marpaung Dr. Firm B. Prayitno Dr. Hadi Nasbey

Instruction Processing:

- 1. Use paper Striped/plain size A4/Folio as answer sheet.
- 2. Write it down Name & NIM as well Date Implementation in Corner Right on in every page
- 3. Answer written with neat use ballpoint color Black blue

Take your pick 3 question for done

- 1. Look for it approximation from mark in lower This until ethnic group order-1 a. $e^{0.01}$
 - b. ln(0.01)
- 2. Determine row rank from function $ln(1 + x^2)$, Then look for it hoseits convergence
- 3. Determine equality Parameter For circle $(x-2)^2 + y^2 = 1$ leave from point (1.0) move one way needle O'clock One time around circle use corner θ as parameter

- 4. Determine $\frac{\partial z}{\partial u} \operatorname{dan} \frac{\partial z}{\partial v}$ bila $z = 4e \times \ln y$ and $x = \ln (u \cos v)$, $y = u \sin v$ as function from u And v
- 5. Show vectors following; $\mathbf{B} = \frac{10}{r} \mathbf{a}_r + r \cos \theta \mathbf{a}_\theta + \mathbf{a}_\emptyset$ in cartesian coordinate and celendrical!