

1. (35 points) Numerical Integrals . The work done by gas undergoing expansionisothermal can be calculated with the equation:

$$
W=\int P d V
$$

where P and V are the pressure and volume of the gas. If the results of measuring the pressure and volume of the gasas in the following table, calculate the work done by the gas (in kJ) using the combination rule trapezoid, rule Simpson's $1 / 3$, and Simpson's $3 / 8$ rule.

$P(k P a)$	336	294.4	266.4	260.8	260.5	249.6	193.6	165.6
$V\left(m^{3}\right)$	0.5	2	3	4	6	8	10	11

2. (30 points) Numerical Differential : The following is data on the distance traveled by the rocket (y) totime (t):

$t(s)$	0	25	50	75	100	125
$y(\mathrm{~km})$	0	32	58	78	92	100

Use differentiation numeric For estimate speed And acceleration rocket every moment.
3. (35 points) Ordinary Differential Equations : A circuit as inthe image has inductance $L=50 \mathrm{H}$, resistance $R=20 \mathrm{Ohm}$, and voltage source $E=$ $10 \sin (t)$ Volts. At $t=0$ there is no electric current Which flow, $I(0)$ $=0$. When the switch closed then current will flowequal to $I(t)$ according to the equation:

$$
L \frac{d I}{d t}+R I=E
$$

a. Make it count current electricity on $t=0.3 \mathrm{~s}$ use method Runge-Kutta

2 nd order with $h=0.1$
b. Make it count error from results calculation the.

