COURSE PORTFOLIO

BACHELOR OF PHYSICS EDUCATION UNIVERSITAS NEGERI JAKARTA

COURSE PORTFOLIO

Computational Physics

Academic Year - 2022/2023

Program Learning Outcomes

PLO 1 Demonstrate a religious manner, uphold values of humanity and nationalism, and internalize the value of self-reliance, discipline, responsible, critical thinking, innovative, communicative, and collaborative in solving different problems.
PLO 2 They are competent to work in team and independent, documented and analyse data to discover scientific assertions that correspond with standard scientific principles, communicate verbally and in writing, publish the paper, as well as supervise and assess to establish accurate solutions.
PLO 3 They are advanced knowledge of relevant specialized classical theoretical physics and modern physics using mathematical and computational concepts.
PLO 4 They are qualified to accomplish theoretical analysis by fundamental principles of physics and mathematical concepts to generate models or simulations that correspond to hypotheses.
PLO 5 They are capable to demonstrate by involve the fundamental principles of physical measurement and scientific methodology to interpret data and formulate physics phenomena.
PLO 6 They have acquired instrumentation and computational expertise in physics, synthesize and characterize material to expand it to another field.
PLO 7 They have advanced their knowledge in technology that using physics principle and employ physical concept to applied to relevant subject by utilize the development of science and technology in accordance with the field of work.
PLO 8 They are competent to improve their knowledge and continue study to a higher level.

Course Learning Objectives

CLO 1	Students possess the capability to transform scientific inquiries into mathematical equations and subsequently evaluate inaccuracies through the utilization of these modeling assumptions.
CLO 2	Students possess the capacity to conceptualize and analyze nonlinear equations, subsequently devising algorithms to explore potential solutions for the roots of equations. Furthermore, they are capable of employing these algorithms to tackle physics and scientific problems.
CLO 3	Students possess the capacity to conceptualize and generalize the complexities inherent in linear equation systems, thereby enabling them to effectively employ these concepts in the resolution of physics and scientific quandaries.
CLO 4	Students possess the capacity to engage in the analysis, collection, and representation of data by employing techniques such as interpolation and linear regression. These methodologies can be effectively utilized in the resolution of physics and scientific problems.
CLO 5	Students can abstract differential and integral problems numerically to solve questions of physics and science.
CLO 6	Students can identify physics and science issues that apply the principle of optimization to produce solutions.
CLO 7	Students can model and analyze ordinary differential equations with numerical methods.
CLO 8	Students can model and analyze the problem of partial differential equations with numerical methods.

Lecturer:

1. Dr.rer.nat. Bambang Heru Iswanto, M.Si.
2. Dewi Muliyati, M.Si., M.Sc.

Mapping Course Learning Outcome (CO) and Program Learning Outcome (PLO)

Program Learning Outcome (PLO) \rightarrow	PLO 3 They are advanced knowledge of relevant specialized classical theoretical physics and modern physics using mathematical and computational concepts.	PLO 4 They are qualified to accomplish theoretical analysis by fundamental principles of physics and mathematical concepts to generate models or simulations that correspond to hypotheses.
Course Learning Outcome (CLO) \downarrow		
CLO 1 Students possess the capability to transform scientific inquiries into mathematical equations and subsequently evaluate inaccuracies through the utilization of these modeling assumptions.		Assignment 1

CLO 2 Students possess the capacity to conceptualize and analyze nonlinear equations, subsequently devising algorithms to explore potential solutions for the roots of equations. Furthermore, they can employ these algorithms to tackle physics and scientific problems.	Assignment 2	Midterm Test
CLO 3 Students possess the capacity to conceptualize and generalize the complexities inherent in linear equation systems, thereby enabling them to effectively employ these concepts in the resolution of physics and scientific quandaries.	Assignment 3 Project 1	Assignment 3 Project 1 Midterm Test
CLO 4 Students possess the capacity to engage in the analysis, collection, and representation of data by employing techniques such as interpolation and linear regression. These methodologies can be effectively utilized in the resolution of physics and scientific problems.	Project 2	Project 2 Midterm Test
CLO 5 Students can abstract differential and integral problems numerically to solve questions of physics and science.	Assignment 4 Assignment 5	Assignment 4 Assignment 5 Final Test
CLO 6 Students can identify physics and science issues that apply the principle of optimization to produce solutions.	Assignment 6	Assignment 6
CLO 7 Students can model and analyze ordinary differential equations with numerical methods.	Project 3	Project 3 Final Test
CLO 8 Students can model and analyze the problem of partial differential equations with numerical methods.	Project 4	Project 4

Page | 3

Forms of Assessment
 $\begin{array}{ll}\text { Assignment } & 25 \% \\ \text { Projet }\end{array}$
 Project Project-1 10%
 Project-2 15\%
 Project-3 15\%
 Project-4 15\%
 | Midterm Test | 10% |
| :--- | ---: |
| Final Test | 10% |
| | |
| | |
| | Total |
| | 100% |

Outcomes Assessment

No.	Name	Assignment	Project 1	Project 2	Project 3	Project 4	Midterm Test	Final Test	Final Score	Grade
1	A	67	87	72	75	80	25	30	65.03	B-
2	B	82	85	71	65	73	58	60	72.15	B
3	C	82	85	80	75	73	41	61	73.36	B
4	D	79	85	75	75	73	50	41	70.80	B
5	E	82	85	76	70	73	18	60	69.62	B-
6	F	84	87	73	75	80	51	72	76.18	B+
7	G	82	85	73	75	73	26	35	68.22	B-
8	H	82	85	86	75	73	21	74	73.53	B
9	I	82	86	87	75	93	35	61	76.92	A-
10	J	82	85	87	75	73	31	61	73.29	B
11	K	82	84	71	75	73	31	58	70.59	B
12	L	82	84	76	70	73	25	53	69.55	B-
13	M	82	85	73	65	73	31	57	69.42	B-
14	N	82	86	64	65	73	16	68	67.84	B-
15	O	82	85	78	70	73	26	62	70.91	B
16	P	68	85	74	75	80	31	55	68.40	B-

Page $\mid 4$

17	Q	86	87	71	75	87	36	27	71.43	B
18	R	82	85	80	75	73	24	61	71.69	B
19	S	82	85	77	70	73	18	25	66.22	B-
20	T	80	84	81	80	80	42	27	71.30	B
21	U	84	87	72	75	80	31	41	70.81	B
22	V	82	85	64	65	80	28	51	68.15	B-
23	W	88	87	83	80	80	41	60	77.23	A-
24	X	82	87	66	65	73	26	48	67.13	B-
25	Y	82	85	66	65	73	26	64	68.50	B-
26	Z	88	86	83	80	93	46	80	81.55	A-
27	AA	82	84	79	75	73	18	71	71.73	B
28	AB	82	84	72	65	73	31	62	69.59	B-
29	AC	82	85	76	75	73	53	65	74.39	B
30	AD	88	87	84	80	73	74	59	79.45	A-
31	AE	84	86	86	70	73	50	55	74.47	B
32	AF	80	85	76	70	80	28	56	70.89	B
33	AG	82	86	86	75	80	23	58	73.30	B
34	AH	82	85	81	70	73	49	67	74.25	B

Calculation of Weight per PLO

Form of Assessment	Weight	Weight per PLO	Total	Total Weight		
		PLO 3	PLO 4		PLO 3	PLO 4
Assignment	0.25	0.5	0.5	1.0	0.125	0.125
Project	0.55	0.5	0.5	1.0	0.275	0.275
Midterm Test	0.10	0.0	1.0	1.0	0.000	0.100
Final Test	0.10	0.0	1.0	1.0	0.000	0.100
				0.4	0.6	

Page | 5

Example of PLO Calculation

No.	Name	Assignment	Project 1	Project 2	Project 3	Project 4	Midterm Test	Final Test	Final Score	Grade
9	I	82	86	87	75	93	35	61	76.92	A-

Project student with name I $=85.04$

No.	Name	PLO 3	PLO 4
9	I	$(82 * 0.125+85.04 * 0.275+35 * 0+61 * 0) / 0.4=$	$(82 * 0.125+85.04 * 0.275+35 * 0.1+61 * 0.1) / 0.6$
		83.93	72.09

PLO Assessment Rubric

PLO	Performance Criteria	Excellent (E)	Good (G)	Satisfy (S)	Fail (F)
3	Possess the advanced knowledge of relevant specialized classical theoretical physics and modern physics using mathematical and computational concepts.	Have the advanced knowledge of relevant specialized classical theoretical physics and modern physics using mathematical and computational concepts with a score of at least 80.	Have the advanced knowledge of relevant specialized classical theoretical physics and modern physics using mathematical and computational concepts with a score of at least 70 and less than 80.	Have the advanced knowledge of relevant specialized classical theoretical physics and modern physics using mathematical and computational concepts with a score of at least 55 and less than 70.	Have the advanced knowledge of relevant specialized classical theoretical physics and modern physics using mathematical and computational concepts with a score of less than 55.
4	Possess the qualification to accomplish theoretical analysis by fundamental principles of physics and mathematical concepts to generate models or simulations that correspond to hypotheses.	Possess the qualification to accomplish theoretical analysis by fundamental principles of physics and mathematical concepts to generate models or simulations that correspond to hypotheses with a score of at least 80.	Possess the qualification to accomplish theoretical analysis by fundamental principles of physics and mathematical concepts to generate models or simulations that correspond to hypotheses with a score of at least 70 and less than 80.	Possess the qualification to accomplish theoretical analysis by fundamental principles of physics and mathematical concepts to generate models or simulations that correspond to hypotheses with a score of at least 55 and less than 70.	Possess the qualification to accomplish theoretical analysis by fundamental principles of physics and mathematical concepts to generate models or simulations that correspond to hypotheses with a score of less than 55.

Example of PLO Predicates for Each Student

No.	Name	Assignment	Project	Midterm Test	Final Test	PLO 3	PLO 4
9	I	82	85.04	35	61	83.93 Excellent	72.09 Good

PLO Predicates for All Students

No	Name	Assignment	Project	Midterm Test	Final Test	Final Score	Grade	PLO 3 Score	PLO 4 Score	PLO 3 Predicates	PLO 4 Predicates
1	A	67.00	77.77	25.00	30.00	65.03	B-	74.21	58.77	G	S
2	B	82.00	72.45	58.00	60.00	72.15	B	75.26	69.96	G	S
3	C	82.00	77.57	41.00	61.00	73.36	B	78.76	69.64	G	S
4	D	79.17	76.20	50.00	41.00	70.80	B	76.94	66.59	G	S
5	E	81.67	75.27	18.00	60.00	69.62	B-	77.08	64.51	G	S
6	F	83.83	78.05	51.00	72.00	76.18	B+	79.66	73.74	G	G
7	G	81.83	75.75	26.00	35.00	68.22	B-	77.46	61.93	G	S
8	H	81.50	79.36	21.00	74.00	73.53	B	79.83	69.19	G	S
9	I	82.17	85.05	35.00	61.00	76.92	A-	83.93	72.10	E	G
10	J	81.50	79.48	31.00	61.00	73.29	B	79.91	68.74	G	S
11	K	82.00	74.89	31.00	58.00	70.59	B	76.92	66.24	G	S
12	L	81.83	75.07	25.00	53.00	69.55	B-	76.99	64.45	G	S
13	M	81.83	73.02	31.00	57.00	69.42	B-	75.59	65.18	G	S
14	N	82.00	70.80	16.00	68.00	67.84	B-	74.12	63.53	G	S
15	O	81.83	75.73	26.00	62.00	70.91	B	77.45	66.42	G	S
16	P	67.83	77.89	31.00	55.00	68.40	B-	74.55	64.16	G	S
17	Q	85.67	79.48	36.00	27.00	71.43	B	81.21	64.77	E	S
18	R	82.17	77.55	24.00	61.00	71.69	B	78.80	66.83	G	S
19	S	81.83	75.39	18.00	25.00	66.22	B-	77.21	58.77	G	S

Page $\mid 7$

20	T	79.67	80.89	42.00	27.00	71.30	B	80.30	65.17	E	S
21	U	83.50	77.70	31.00	41.00	70.81	B	79.32	65.01	G	S
22	V	81.67	72.43	28.00	51.00	68.15	B-	75.14	63.38	G	S
23	W	87.83	82.14	41.00	60.00	77.23	A-	83.71	72.78	E	G
24	X	82.00	71.32	26.00	48.00	67.13	B-	74.48	62.10	G	S
25	Y	81.83	70.98	26.00	64.00	68.50	B-	74.19	64.58	G	S
26	Z	87.67	85.52	46.00	80.00	81.55	A-	85.98	78.46	E	G
27	AA	81.83	77.05	18.00	71.00	71.73	B	78.35	67.19	G	S
28	AB	81.67	72.50	31.00	62.00	69.59	B-	75.18	65.74	G	S
29	AC	82.00	76.52	53.00	65.00	74.39	B	78.04	71.82	G	G
30	AD	87.83	80.34	74.00	59.00	79.45	A-	82.48	77.29	E	G
31	AE	84.33	77.98	50.00	55.00	74.47	B	79.77	70.81	G	G
32	AF	80.17	77.18	28.00	56.00	70.89	B	77.92	66.08	G	S
33	AG	82.00	81.27	23.00	58.00	73.30	B	81.30	67.83	E	S
34	AH	82.00	76.64	49.00	67.00	74.25	B	78.12	71.54	G	G

Percentage PLO Achievements

	Predicate	PLO 3	PLO 4
$\%$	E	21	0
$\%$	G	79	24
$\%$	S	0	76
$\%$	F	0	0
		100	100

Achievement Percentage of PLO Computational Physics

Appendix

Assignment-1	Physics and Science Modeling
Assignment-2	Root of Equations
Assignment-3	Linear Algebraic Equation
Assignment-4	Numerical Differentiation
Assignment-5	Numerical Integration
Assignment-6	Optimization
Project-1	Compare Linear Algebraic Equation
Project-2	Predict data using Interpolation and Curve Fitting
Project-3	Solve Physical Problem using Ordinary Differential Equations
Project-4	Solve Physical Problem using Partial Differential Equations

Page $\mid 9$

Scoring for Assignment

No	Indicators	Weight (\%)	Score			
			0	1	2	3
1	Writing the problem formula.	10				
2	Modeling mathematical equations.	10				
3	Writing algorithms.	10				
4	Writing the source code.	25				
5	Analysing the results of the simulation.	25				
6	Answering questions.	20				

Assignment Score $=\frac{\sum \text { Weight } \times \text { Score }}{3}$

SCORING FOR TEAM PROJECT

No	Indicators	Weight (\%)	Score			
			1	2	3	4
Preparation Stage						
1	Project Design	5				
2	References	5				
Implementation Stage						
1	Five steps of Programming	5				
2	Material and multimedia identification	5				
3	Identify libarary selection	10				
4	Simulation characters and applications	10				
5	Methods of simulation and computational accuracy testing	10				
Sourcecode						
1	Sourcode running well	10				
2	Sourcecode multi-problem	15				
Final Stage						
1	History Commit	5				
2	Presentation	20				

Project Score $=\frac{\sum \text { Weight } \times \text { Score }}{4}$

	KEMENTERIAN RISET DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI JAKARTA FAKULTAS MIPA PROGRAM STUDI FISIKA - PENDIDIKAN FISIKA MIDTERM TEST COMPUTATIONAL PHYSICS (3 SKS)	Tanggal	15 June 2023
		Waktu	100 minutes
		Perangkat yang dibolehkan	Open book, Scientific Calculator
		Dosen	Dr. B. Heru Iswanto, M.Si Handjoko Permana, M.Si Dewi Muliyati, M.Sc
Working Instructions: - Do the questions manually on the answer sheet. - Calculation results are sufficient up to 4 decimal places. - Write down the name, NIM, course, and lecturer. - The results of cheating / cooperation will be given a value of - Do the problems with a ballpoint. ZERO.			

1. (25 Points). The industry produces three components: K1, K2, and K3. To produce a K1 component, four kg of copper, one kg of zinc, and two kg of nickel are required. For K 2 , you need three kg of copper, three kg of zinc, and one kg of nickel. Meanwhile, K3 requires two kg of copper, one kg of zinc, and three kg of nickel, as shown in the following table:

Components	Copper	Zinc	Nickel
K1	4	1	2
K2	3	3	1
K3	2	1	3

Use the numerical method that you are good at to determine how many K1, K2, and K3 components can be produced optimally if the total materials available are 960 kg of copper, 510 kg of zinc, and 610 kg of nickel.
2. (25 points) The following is the result of measuring the concentration of oxygen in seawater according to the measured temperature.

$T\left({ }^{\circ} \mathrm{C}\right)$	16	24	32	40
$\rho(\mathrm{mg} / \mathrm{L})$	9.870	8.418	7.305	6.413

Calculate the approximate value of the oxygen concentration at $27^{\circ} \mathrm{C}$ using the polynomial interpolation method that you are good at.
3. (25 points) Measurement of speed (v) and force (F) on wind turbines obtained the following data:

$v(\mathrm{~m} / \mathrm{s})$	10	20	30	40	50	60	70	80
$F(\mathrm{~N})$	25	70	380	550	610	1220	830	1450

a. From these data perform linear regression to model the relationship F and v.
b. Make a data plot and a graph of the regression function that you get.
c. B How big is the correlation between the two variables? please.
4. (25 points) In the following RLC circuit, the circuit impedance is:

$$
\frac{1}{Z}=\sqrt{\frac{1}{R^{2}}+\left(\omega C-\frac{1}{\omega L}\right)^{2}}
$$

Where Z is the impedance (Ω) and ω the corner frequency $(\mathrm{rad} / \mathrm{s})$. If $\mathrm{R}=225 \Omega, \mathrm{C}=0.6 \mu \mathrm{~F}$, and L $=0.5 \mathrm{H}$, determine the value of ω so that $\mathrm{Z}=75 \Omega$. Use a closed numerical method with an initial guess value of $\omega=1.0$ and 1000 , and the stopping criterion $\varepsilon_{\text {stop }}=0.1 \%$.

No	Answer					Score
	The value of k 3 is: 90					
2	Students can choose a method that is mastered, this is exemplified by the Newton interpolation method. Using Newton's interpolation method The difference table is divided					15
	Interpolasi Newton					
	T (degreess C)	16	24	32	40	
	$\rho(\mathrm{mg} / \mathrm{L})$	9.87	8.418	7.305	6.413	
	target to estimate the value of ρ at $T=27$ degrees C Table for Newton's divisible differences					
	xi	f(xi)	$\mathrm{f}[\mathrm{x} 1, \mathrm{x} 2$]	f[x1,x2,x3]	$f[x 1, x 2, x 3, x 4]$	
	24	8.418	-0.139125	0.002648438	$-3.84115 \mathrm{E}-05$	
	32	7.305	-0.1603125	0.002033854		
	16	9.87	-0.1440417			
	40 6.413					
	 f(27) orde-3 7.967236328					
	For orde-3: $\begin{aligned} & f(x)=f\left(x_{0}\right)+\cdots+\left(x-x_{0}\right) \ldots\left(x-x_{2}\right) f\left[x_{3}, x_{2}, x_{1}, x_{0}\right] \\ & f(27)=8.418+(27-24)(-0.139125) \\ & +(27-24)(27-32)(0.00264844)+(27-24)(27 \\ & -32)(27-16)(-3.84115 E-05) \end{aligned}$ Other polynomial methods are still assessed with pay attention to the decimal number displayed.					10
3	3a. Linear regression equation For linear regression, we tabulate the data using $v=x$; $F=y$					10
	x	y			\| $x y$	
	10	25	100		250	
	20	70	400		1400	
	30	380	900		11400	
	40	550	1600		22000	
	50	610	2500		30500	
	60	1220	3600		73200	
	70	830	4900		58100	
	80	1450	6400		116000	
	$\Sigma=360$	$\Sigma=513$		$=20400$	$\Sigma=312850$	
	$\begin{aligned} & y=a_{0}+a_{1} x \\ & n=8 \end{aligned}$					

No	Answer	Score
	Students can show the root value or omega value $=157.9$ and the relative error value is less than 0.1%. The table above may have a different arrangement and/or sequence, the most important thing is that the table determines xc and the error value.	

1. (35 point) Numerical Integral. The work done by an isothermally expanding gas can be calculated by the equation:

$$
W=\int P d V
$$

where P and V are the pressure and volume of the gas. If the measurement results for the pressure and volume of the gas are as shown in the following table, calculate the work done by the gas (in kJ) using a combination of the trapezoidal rule, Simpson's $1 / 3$ rule, and Simpson's $3 / 8$ rule.

$P(k P a)$	336	294.4	266.4	260.8	260.5	249.6	193.6	165.6
$V\left(m^{3}\right)$	0.5	2	3	4	6	8	10	11

2. (30 point) Numerical Differential: The following is data on the distance traveled by the rocket (y) against time (t):

$t(s)$	0	25	50	75	100	125
$y(\mathrm{~km})$	0	32	58	78	92	100

Use numerical differentiation to estimate the velocity and acceleration of the rocket over time.
3. (35 point) Ordinary Differential Equations: A circuit like the one in the figure has inductance $L=50 \mathrm{H}$, resisteance $R=20 \mathrm{Ohm}$, and voltage source $E=10 \sin (t)$ Volt. At $\mathrm{t}=0$ no electric current flows, $I(0)=0$. When the switch is closed, a current will flow of $\mathrm{I}(\mathrm{t})$ according to the equation:

$$
L \frac{d I}{d t}+R I=E
$$

a. Calculate the electric current at $\mathrm{t}=0.3 \mathrm{~s}$ using the 2 nd order Runge-Kutta method with $\mathrm{h}=0.1$.
b. Calculate the error from the calculation results.

Openbook exam system, the answers must be in accordance with the instructions, especially in using numerical methods

1. Max: 35 point

$P(k P a)$	336	294.4	266.4	260.8	260.5	249.6	193.6	165.6
$V\left(m^{3}\right)$	0.5	2	3	4	6	8	10	11
Subnumeric for easy correcting students are not required to use this.	1	2	3	4	5	6	7	8

Applying the trapezoidal method to calculate integration on Volume (v_{1} and v_{2}) and Volume (v_{7} and v_{8}).	Score: 10 point
Applying the Simpson method $1 / 3$ on v_{2}, v_{3}, and v_{4} $I_{2}=(4-2)^{\underline{V_{2}}+4 V_{3}+V_{4}} 6^{6}=\frac{294.4+4(266.4)+260.8}{3}=540.27$	Score: 10 point
Applying the Simpson method $3 / 8$ on v_{4}, v_{5}, v_{6} and v_{7} $I_{3}=(10-4)^{\underline{V_{4}}+3\left(V_{5}+V_{6}\right)+V_{7}} \frac{3}{8}=\frac{3}{4}(260.8+3(260.5+249.6)+193.6)=1488.5$	Score: 10 point
The work value is the sum of all the integration parts $\begin{aligned} & W=I_{1}+I_{2}+I_{3}+I_{4} \\ & W=472.8+540.27+1488.5+179.55=2681.12 \mathrm{~kJ} \end{aligned}$	Score: 5 Point

If student answers using the trapezoidal method but completes all parts of the integration, he will still be assessed with a maximum of 15 points.
2. Max: 30 Point

Table data

$t(s)$	0	25	50	75	100	125
$y(\mathrm{~km})$	0	32	58	78	92	100

The main objective of this problem is to determine the value of velocity and acceleration for each time according to table data using numerical differentiation. Time in seconds; Distance in kilometers

$\begin{aligned} & f^{\prime}\left(t_{5}\right)=\frac{3 f\left(t_{5}\right)-4 f\left(t_{4}\right)+f\left(t_{3}\right)}{2 h} \\ & f\left(t_{3}\right)=78 ; f\left(t_{4}\right)=92 ; f\left(t_{5}\right)=100 ; h=25 \\ & f^{\prime}(125)=\frac{3 \times 100-4 \times 92+78}{50}=0.2 \\ & v(t=125)=0.20 \mathrm{~km} / \mathrm{s} \end{aligned}$ Step-6 $\begin{aligned} & f^{\prime \prime}\left(t_{3}=\frac{2 f\left(t_{5}\right)-5 f\left(t_{4}\right)+4 f\left(t_{3}\right)-f\left(t_{2}\right)}{h^{2}}\right. \\ & f\left(t_{3}\right)=78 ; f\left(t_{4}\right)=92 ; f\left(t_{5}\right)=100 ; f\left(t_{2}\right)=58 ; h=2 \\ & f^{\prime \prime}(125)=\frac{2 \times 100-5 \times 92+4 \times 78-58}{(25)^{2}}=-0.0096 \\ & a(t=125)=-0.0096 \mathrm{~km} / \mathrm{s}^{2} \end{aligned}$				
velocity and acceleration data every time				Score: 5 Point
t	y	v	a	
0	0	1.4	-0.0096	
25	32	1.16	-0.0096	
50	58	0.92	-0.0096	
75	78	0.68	-0.0096	
100	92	0.44	-0.0096	
125	100	0.20	-0.0096	

3. Max: 35 Point

$$
L \frac{d l}{d t}+R I=E
$$

$L=50 H ; R=20$ ohm $; E=10 \sin (t)$ Volt
At $\mathrm{t}=0$ there is no electric current flowing, $I(0)=0$
a. Calculate the electric current at $t=0.3 \mathrm{~s}$ using the Runge-Kutta method of order-2 with $\mathrm{h}=0.1$ Runge Kutta order-2 Heun method: scan files part 1 and part $2=35$ points. Students may also use the Ralston method, with similar steps If anyone answers analytically, 5 points are given.
b. Calculate the error from the calculation results. (this section if anyone answers is given an additional 3 poin

COURSE PORTFOLIO

Mathematical Physics II Academic Year - 2022/2023

Program Learning Outcomes

PLO 1 Demonstrate a professional attitude in work based on religious values, human values and culture.
PLO 2 Demonstrate an attitude of critical thinking, innovative, collaborative and communicative in solving problems in the field of physics education.
PLO 3 Able to comprehend concepts in classical and modern physics.
PLO 4 Involve mathematical, computational, and measurement protocols in order to solve the physics problem.
PLO 5 Capable to implement pedagogical content knowledge technology (TPACK) in advancing, implementing and evaluating physics learning.
PLO 6 Capable to utilize fundamental principle and applied physics, identify problem, discover alternative solutions based on theory and research, construct-ed and implemented in physics education research.
PLO 7 Capable of conducting education, management of physics laboratory, and practicum in accordance with the HSE (Health Safety and Environment) principle.
PLO 8 Capable to enhancing another related competence with applied physics.

Course Learning Objectives

CLO 1: Understand the concept of scalar and vector field.
CLO 2: Understand the periodic function and its applications.
CLO 3: Seek for the solution of partial differential equation with appropriate boundary conditions.
CLO 4: Understand the functions of complex variables and their applications.

Lectures: Dr. Teguh Budi Prayitno, M.Si.
Prof. Dr. Mangasi A. Marapung
Prof. I Made Astra, M.Si

Mapping Course Learning Outcome (CO) and Program Learning Outcome (PLO)

	PLO 3: They are advanced knowledge of relevant specialized classical theoretical physics and modern physics using mathematical and computational concepts.	PLO 4: They are qualified to accomplish theoretical analysis by fundamental principles of physics and mathematical concepts to generate models or simulations that correspond hypotheses
CLO 1: Understand the concept of scalar and vector field.	Assignment	-
CLO 2: Understand the periodic function and its applications.	-	Case-based Learning
CLO 3: Seek for the solution of partial differential equation with appropriate boundary conditions.	Midterm Exam	-
CLO 4: Understand the functions of complex variables and their applications.	-	Final Exam

Forms of Assessment

Assignment $\quad=10 \%$
Case-based Learning $\quad=50 \%$
Midterm Exam
$=20 \%$
Final Exam
$=20 \%$
Total
$=100 \%$

	PLO 3	PLO 4
Assignment	50%	50%
Case-based Learning	50%	50%
Midterm Exam	50%	50%
Final Exam	50%	50%

Outcomes Assessment

No	Name	Assignment	Case- based Learning	Midterm Exam	Final Exam	final score	Grade
1	A	80	80	41	45	65.2	C+
2	B	90	90	47	57	74.8	B
3	C	95	95	60	63	81.6	A-
4	D	90	90	60	45	75	B
5	E	85	90	36	68	74.3	B
6	F	95	90	49	70	78.3	B+
7	G	90	90	39	65	74.8	B
8	H	95	90	43	68	76.7	B+
9	I	95	95	59	68	82.4	A-
10	J	95	95	46	68	79.8	B+
11	K	95	90	66	68	81.3	A-
12	L	80	85	46	68	73.3	B
13	M	95	90	48	65	77.1	B+
14	N	95	85	44	72	75.2	B+
15	O	95	90	46	68	77.3	B+
16	P	98	85	44	57	72.5	B
17	Q	98	80	39	50	67.6	B-
18	R	96	90	46	65	76.8	B+
19	S	95	90	46	68	77.3	B+
20	T	90	85	44	40	68.3	B-
21	U	95	90	33	76	76.3	B+
22	V	95	90	43	75	78.1	B+
23	W	85	85	29	75	71.8	B

24	X	60	75	39	68	64.9	C+
25	Y	95	90	54	60	77.3	B+
26	Z	95	95	62	79	85.2	A
27	AA	90	90	51	68	77.8	B+
28	AB	75	85	31	65	69.2	B-
29	AC	80	95	39	68	76.9	B+
30	AD	98	95	57	53	75.5	B+
31	AE	98	96	56	68	80.48	A-
32	AF	90	90	16	60	60.8	C+
33	AG	90	95	61	58	76.25	B+
34	AH	95	95	61	68	81.25	A-

Calculation of Weight per PLO

Form of Assessment	Weight	Weight per PLO			Total Weight	
		PLO 4		Total	PLO 3	PLO 4
Assignment	0.10	0.50	0.50	1.00	0.05	0.05
Case-based Learning	0.50	0.50	0.50	1.00	0.25	0.25
Midterm Exam	0.20	0.50	0.50	1.00	0.10	0.10
Final Exam	0.20	0.50	0.50	1.00	0.10	0.10
Total	1.00	2.00	2.00	4.00	0.50	0.50

Example of PLO Calculation

No	Name	Assignment	Case-based Learning	Midterm Exam	Final Exam	Final Score and Grade	
1	Z	95	95	62	79	85.2	A

No	Name	PLO 3	PLO 4
1	Z	$(95 * 0.05)+(95 * 0.25)+(62 * 0.1)$	$(95 * 0.05)+(95 * 0.25)+(62 * 0.1)$

PLO	Performance Criteria	Excellent (E)	Good (G)	Satisfy (S)	Fail (F)
3	Employing advanced knowledge of relevant specialized classical theoretical physics and modern physics using mathematical concepts.	Students are able to employ advanced knowledge of relevant specialized classical theoretical physics and modern physics using mathematical concepts with a score of at least 80.	Students are able to employ advanced knowledge of relevant specialized classical theoretical physics and modern physics using mathematical concepts with a score of at least 70 and less than 79.	Students are able to employ advanced knowledge of relevant specialized classical theoretical physics and modern physics using mathematical concepts with a score of at least 56 and less than 69.	Students are able to employ advanced knowledge of relevant specialized classical theoretical physics and modern physics using mathematical concepts with a score of less than or equal 55
4	Accomplishing theoretical analysis by fundamental principles of physics and mathematical concepts to generate models correspond to hypotheses.	Students are able to accomplish theoretical analysis by fundamental principles of physics and mathematical concepts to generate models correspond to hypotheses with a score of at least 80	Students are able to accomplish theoretical analysis by fundamental principles of physics and mathematical concepts to generate models correspond to hypotheses with a score of at least 70 and less than 79 .	Students are able to accomplish theoretical analysis by fundamental principles of physics and mathematical concepts to generate models correspond to hypotheses with a score of at least 56 and less than 69.	Students are able to accomplish theoretical analysis by fundamental principles of physics and mathematical concepts to generate models correspond to hypotheses with a score of less than or equal 55

Example of PLO Predicates for Each Student

No	Name	PLO 3	PLO 4
1	Z	85.2 Excellent	85.2 Excellent

PLO Predicates for All Students

No	Name	final score	Grade	PLO 3	PLO 4
1	A	65.2	C+	F	F
2	B	74.8	B	G	G
3	C	81.6	A-	E	E
4	D	75	B	G	G
5	E	74.3	B	G	G
6	F	78.3	B+	G	G
7	G	74.8	B	G	G
8	H	76.7	B+	G	G
9	I	82.4	A-	E	E
10	J	79.8	B+	G	G
11	K	81.3	A-	E	E
12	L	73.3	B	G	G
13	M	77.1	B+	G	G
14	N	75.2	B+	G	G
15	O	77.3	B+	G	G
16	P	72.5	B	G	G
17	Q	67.6	B-	F	F
18	R	76.8	B+	G	G
19	S	77.3	B+	G	G
20	T	68.3	B-	F	F
21	U	76.3	B+	G	G
22	V	78.1	B+	G	G
23	W	71.8	B	G	G
24	X	64.9	C+	F	F
25	Y	77.3	B+	G	G
26	Z	85.2	A	E	E
27	AA	77.8	B+	G	G
28	AB	69.2	B-	G	G
29	AC	76.9	B+	G	G
30	AD	75.5	B+	E	E
31	AE	80.48	A-	E	E
32	AF	60.8	C+	G	G
33	AG	76.25	B+	E	E
34	AH	81.25	A-	E	E

Percentage PLO Achievements

Grade	PLO 3	PLO 8
E	$8(23.53 \%)$	8
G	$22(64.71 \%)$	22
S	$4(11.76 \%)$	4
F	0	0

Achievement Percentage of PLO

	KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI UNIVERSITAS NEGERI JAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PRODI PENDIDIKAN FISIKA Kampus A UNJ Rawamangun, Gd. Hasjim Asj'arie Lt. 5 Jl. Rawamangun Muka No. 1 Jakarta 13220 Telp. 021-29266285/29266284	Mid-term Exam 118 Mathematical Physics II	
		Day/Date	Monday, $27^{\text {th }}$ March 2023
		Time	10.00-11.40
		Study Program	Physics Education
		Examination Format	Closed Book
		Lecturers	Prof. Dr. Mangasi A.M Dr. Teguh B. Prayitno Prof. I Made Astra, M.Si

1. a. Find the area element $d A$ of the polar coordinates using the Jacobian method
b. Use the above polar coordinates to calculate the following integral:

$$
\int_{0}^{\infty} \int_{0}^{\infty} e^{-\sqrt{x^{2}+y^{2}}} d x d y
$$

2. Examine if the vector field $\overrightarrow{\boldsymbol{F}}=z \hat{\imath}+\hat{x}$ kis conserved? If yes, find its appropriate scalar field
3. Calculate the integral $\int_{C} \overrightarrow{\boldsymbol{F}} . d \overrightarrow{\boldsymbol{r}}$ where C is the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-2=0$ from $(1,1)$ to $(1,-1)$ and $\overrightarrow{\boldsymbol{F}}=(2 x-3 y) \hat{\boldsymbol{i}}-(3 x-2 y) \boldsymbol{J}$
4. Plot the following function:

$$
f(x)=\left\{\begin{aligned}
x, & 0<x<4 \\
8-x, & 4<x<8
\end{aligned}\right.
$$

and use it to determine:
a. Cosine Fourier series and plot it
b. Sine Fourier series and plot it

	KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI UNIVERSITAS NEGERI JAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PRODI PENDIDIKAN FISIKA Kampus A UNJ Rawamangun, Gd. Hasjim Asj'arie Lt. 5 J. Rawamangun Muka No. 1 Jakarta 13220 Telp. 021-29266285/29266284	FINAL EXAM 118	
		Mathematical Physics II	
		Hari/Tanggal	Senin, 12 ${ }^{\text {th }}$ June 2023
		Time	10.00-11.40
		Study Program	Physics Education
		Examination Format	Closed Book
		Lecturers	Prof. Dr. Mangasi A.M Dr. Teguh B. Prayitno

1. Consider the following function

$$
f(t)=\left\{\begin{array}{cl}
\cos \omega_{0} t, & |t| \leq a \\
0, & |t|>a
\end{array}\right.
$$

a. Find the Fourier transformCari transformasi Fourier nya
b. Draw the function $f(t)$ as the function of t
2. Find the potential function of the rectangle $0 \leq x \leq 20$ dan $0 \leq y \leq 40$ if the top side is held at 110 volts while the other sides are grounded.
3. Determine if the function $u(x, y)=e^{x} \cos y$ is a harmonic function? If yes, formulate the complex function $f(z)$
4. Calculate the integral below along C, which is a circle with the radius 1 and counter-clock wise rotation

$$
\oint_{C} \frac{z^{6}}{(2 z-1)^{6}} d z
$$

COURSE PORTFOLIO

Introduction to Information Technology

Academic Year - 2022/2023

Program Learning Outcomes

PLO 1 Demonstrate a professional attitude in work based on religious values, human values and culture.
PLO 2 Demonstrate an attitude of critical thinking, innovative, collaborative and communicative in solving problems in the field of physics education.
PLO 3 Able to comprehend concepts in classical and modern physics.
PLO 4 Involve mathematical, computational, and measurement protocols in order to solve the physics problem.
PLO 5 Capable to implement pedagogical content knowledge technology (TPACK) in advancing, implementing and evaluating physics learning.
PLO 6 Capable to utilize fundamental principle and applied physics, identify problem, discover alternative solutions based on theory and research, construct-ed and implemented in physics education research.
PLO 7 Capable of conducting education, management of physics laboratory, and practicum in accordance with the HSE (Health Safety and Environment) principle.
PLO 8 Capable to enhancing another related competence with applied physics.

Course Learning Objectives

CLO 1	Understand Information Technology, Computer Systems, and Computer Operating Systems: their comprehensive understanding, trends, and developments.
CLO 2	Understand communications technologies and computer networking and multimedia technologies comprehensively and apply them to learn information technology further.
CLO 3	Understand artificial intelligence and big data technologies: their fundamentals and applications comprehensively and apply them to learn information technology further.
CLO 4	Understand the security and ethics concepts in the cyber world comprehensively and apply them to study information technology further.

Lecturer:

1. Dewi Muliyati, M.Si., M.Sc.

Mapping Course Learning Outcome (CO) and Program Learning Outcome (PLO)

Program Learning Outcome (PLO) \rightarrow	PLO 4 Involve mathematical, computational, and measurement protocols in order to solve the physics problem.
Course Learning Outcome (CLO) \downarrow	Assignment 1
CLO 1 Understand Information Technology, Computer Systems, and Computer Operating Systems: their comprehensive understanding, trends, and developments.	Assignment 2 Project 1 Midterm Test
CLO 2 Understand communications technologies and computer networking and multimedia technologies comprehensively and apply them to learn information technology further.	Assignment 3 Project 3 Project 4 Midterm Test
CLO 3 Understand artificial intelligence and big data technologies: their fundamentals and applications comprehensively and apply them to learn information technology further.	Assignment 4 Project 2 Final Test
CLO 4 Understand the security and ethics concepts in the cyber world comprehensively and apply them to study information technology further.	Final Test

Forms of Assessment

Assignment	25%
Project	55%
\quad Project-1 10%	
Project-2 15\%	
Project-3 15\%	
Project-4 15\%	
Midterm Test	10%
Final Test $\quad 10 \%$	
	\quad Total
	100%

Outcomes Assessment

No.	Name	Assignment	Project 1	Project 2	Project 3	Project 4	Midterm Test	Final Test	Final Score	Grade
1	A	35	85	85	97	80	56	69	69.09	B-
2	B	82	87	81	90	60	76	65	78.05	B+
3	C	78	80	83	85	78	84	51	77.91	B+
4	D	63	85	81	85	55	78	40	69.10	B-

Page | 33

5	E	81	85	81	97	80	54	63	79.33	B+
6	F	84	85	92	85	85	88	68	84.28	A-
7	G	82	86	81	97	83	84	64	82.98	A-
8	H	83	85	87	80	85	88	47	80.42	A-
9	I	82	85	83	85	55	86	42	75.25	B+
10	J	82	86	81	97	83	82	59	82.35	A-
11	K	83	85	81	85	0	90	37	66.82	B-
12	L	82	87	79	85	63	78	35	74.61	B
13	M	63	86	84	97	83	64	51	75.46	B+
14	N	82	87	83	90	85	84	25	78.91	B+
15	O	82	87	81	85	63	92	47	77.38	B+
16	P	82	87	79	85	63	88	35	75.50	B+
17	Q	82	87	81	85	63	88	36	76.01	B+
18	R	83	85	87	85	85	94	64	83.53	A-
19	S	81	87	83	90	85	88	78	84.36	A-
20	T	82	86	81	97	83	86	55	82.28	A-
21	U	81	80	82	85	78	90	49	78.81	B+
22	V	82	80	80	85	78	90	43	78.33	B+
23	W	74	85	81	85	55	88	44	73.38	B
24	X	83	85	88	85	85	82	64	82.65	A-
25	Y	82	87	83	90	69	88	66	80.96	A-
26	Z	80	80	85	85	78	82	61	79.58	B+
27	AA	82	85	85	97	80	84	63	83.06	A-
28	AB	83	87	81	85	85	88	54	81.27	A-
29	AC	70	85	82	80	45	92	25	68.70	B-
30	AD	81	87	81	90	85	88	61	82.35	A-
31	AE	63	87	83	90	60	82	29	70.54	B
32	AF	80	85	82	80	45	90	49	73.50	B
33	AG	76	85	85	80	45	90	49	72.93	B
34	AH	82	85	87	85	85	68	64	80.81	A-
35	AI	82	85	81	97	80	84	57	81.77	A-

Page | 34

36	AJ	63	87	85	90	60	90	67	75.41	B+
37	AK	82	87	81	90	85	86	54	81.57	A-
38	AL	43	88	82	80	78	92	53	69.95	B-
39	AM	82	88	80	80	78	90	24	76.33	B+
40	AN	84	88	82	80	78	90	64	81.07	A-
41	AO	77	88	82	80	78	88	64	79.14	B+

Calculation of Weight per PLO

		Weight per PLO	Total	Total Weight
Form of Assessment	Weight	PLO 4		
Assignment	0.25	1.0	1.0	0.25
Project	0.55	1.0	1.0	0.55
Midterm Test	0.10	1.0	1.0	0.10
Final Test	0.10	1.0	1.0	0.10
	Total	1.00		

Example of PLO Calculation

No.	Name	Assignment	Project 1	Project 2	Project 3	Project 4	Midterm Test	Final Test	Final Score	Grade
6	F	84	85	92	85	85	88	68	84.28	A-

Project student with name $\mathrm{F}=86.82$

No.	Name	PLO 4
6	F	$(84 * 0.25+86.82 * 0.55+88 * 0.1+68 * 0.1) / 1.00$ $=84.28$

PLO Assessment Rubric

PLO	Performance Criteria	Excellent (E)	Good (G)	Satisfy (S)	Fail (F)
4	Involve mathematical, computational, and measurement protocols in order to solve the physics problem.	Involve mathematical, computational, and measurement protocols in order to solve the physics problem with a score of at least 80.	Involve mathematical, computational, and measurement protocols in order to solve the physics problem with a score of at least 70 and less than 80.	Involve mathematical, computational, and measurement protocols in order to solve the physics problem with a score of at least 55 and less than 70.	Involve mathematical, computational, and measurement protocols in order to solve the physics problem with a score of less than 55.

Example of PLO Predicates for Each Student

No.	Name	Assignment	Project	Midterm Test	Final Test	PLO 4
6	F	84	86.82	88	68	84.28 Excellent

PLO Predicates for All Students

No.	Name	Assignment	Project	Midterm Test	Final Test	Final Score	Grade	PLO 4 Score	PLO 4 Predicates
1	A	35	86.82	56	69	69.09	B-	69.09	S
2	B	82	78.91	76	65	78.05	B+	78.05	G
3	C	78	81.73	84	50.75	77.91	B+	77.91	G
4	D	63	75.82	78	39.75	69.10	B-	69.10	S
5	E	81	85.91	54	63.25	79.33	B+	79.33	G
6	F	84	86.82	88	67.5	84.28	A-	84.28	E
7	G	82	86.73	84	64	82.98	A-	82.98	E
8	H	83	84.09	88	47	80.42	A-	80.42	E
9	I	82	76.27	86	41.5	75.25	B+	75.25	G
10	J	82	86.73	82	59	82.35	A-	82.35	E
11	K	83	60.82	90	37	66.82	B-	66.82	S
12	L	82	77.82	78	35.25	74.61	B	74.61	G
13	M	63	87.64	64	50.5	75.46	B+	75.46	G
14	N	82	86.18	84	25	78.91	B+	78.91	G
15	O	82	78.27	92	46.5	77.38	B+	77.38	G
16	P	82	77.82	88	34.75	75.50	B+	75.50	G
17	Q	82	78.27	88	35.5	76.01	B+	76.01	G
18	R	83	85.45	94	64	83.53	A-	83.53	E
19	S	81	86.18	88	78	84.36	A-	84.36	E
20	T	82	86.73	86	55	82.28	A-	82.28	E
21	U	81	81.27	90	48.75	78.81	B+	78.81	G
22	V	82	80.82	90	42.75	78.33	B+	78.33	G
23	W	74	75.82	88	43.5	73.38	B	73.38	G
24	X	83	85.91	82	64	82.65	A-	82.65	E
25	Y	82	81.82	88	65.5	80.96	A-	80.96	E
26	Z	80	82.18	82	60.75	79.58	B+	79.58	G
27	AA	82	86.82	84	63	83.06	A-	83.06	E
28	AB	83	84.36	88	54	81.27	A-	81.27	E
29	AC	70	71.91	92	25	68.70	B-	68.70	S

Page | 36

30	AD	81	85.73	88	61	82.35	A-	82.35	E
31	AE	63	79.36	82	28.75	70.54	B	70.54	G
32	AF	80	71.91	90	49	73.50	B	73.50	G
33	AG	76	72.82	90	49	72.93	B	72.93	G
34	AH	82	85.45	68	64	80.81	A-	80.81	E
35	AI	82	85.91	84	57	81.77	A-	81.77	E
36	AJ	63	79.82	90	67	75.41	B+	75.41	G
37	AK	82	85.73	86	54	81.57	A-	81.57	E
38	AL	43	81.36	92	52.5	69.95	B-	69.95	S
39	AM	82	80.91	90	23.5	76.33	B+	76.33	G
40	AN	84	81.36	90	64	81.07	A-	81.07	E
41	AO	77	81.36	88	64	79.14	B+	79.14	G

Percentage PLO Achievements

Percentage PLO Ach		
	Predicate	PLO 4
$\%$	E	39
$\%$	G	49
$\%$	S	12
$\%$	F	0
		Total

Achievement Percentage of PLO Computational Physics

Appendix

Assignment-1	Computer Hardware
Assignment-2	Logic Gate
Assignment-3	Signal Recognition
Assignment-4	Data Analytics
Project-1	Designing Computer for Specific Purpose
Project-2	ERD for Specific Information System
Project-3	Front-End Designing using HTML and CSS
Project-4	Designing Information System using CMS

COURSE PORTFOLIO

TEACHING SKILLS

Academic Year - 2022/2023

Program Learning Outcomes

PLO 1Show a professional attitude in working based on religious values, human values, and culture.
PLO 2Show critical, innovative, collaborative and communicative thinking in solving problems in the field of physics education.
PLO 3 Able to understand the concepts of classical and modern physics.
PLO 4Engage math, computation, and measurement protocols to solve physics problems.
PLO 5 Able to implement technological pedagogical content knowledge (TPACK) in promoting, implementing, and evaluating physics learning.
PLO 6 Able to utilize the basic and applied principles of physics, identify problems, find alternative solutions based on theory and research, compile and implement in physics education research.
PLO 7 Able to carry out education, physics laboratory management, and practicum in accordance with K3LH (Health, Safety and Environment) principles.
PLO 8 Able to improve other competencies related to applied physics

Course Learning Objectives

CLO 1	Examine 21st century teaching skills and their implementation in physics learning.
CLO 2	Examine the display of opening and closing skills in physics learning.
CLO 3	Examine the display of questioning skills in physics learning.
CLO 4	Reviewing the display of reinforcement skills in physics learning.
CLO 5	Reviewing the display of skills to make variations in physics learning
CLO 6	Reviewing the display of explaining skills in physics learning.
CLO 7	Reviewing the display of skills in guiding group discussions in physics learning.
CLO 8	Examine the display of classroom management skills in physics learning.
CLO 9	Review the display of skills in conducting individual and small group approaches in classical learning.
CLO 10	Put the results of the study of the eight teaching skills into a micro lesson plan.
CLO 11	Implement the eight teaching skills in peer teaching practice.

Lecturer:

1. Hadi Nasbey, M.Si
2. Handjoko Permana, M.Si.
3. Fauzi Bakri, M.Si
4. Dwi Susanti, M.Pd

Mapping of Course Learning Outcomes (CO) and Program Learning Outcomes (PLO)

Program Learning Outcomes (PLO)	PLO 5 Able to implement pedagogical content knowledge technology (TPACK) in promoting, implementing, and evaluating physics learning.
Course Learning Outcomes (CLOs)	
CLO 1 Examine 21st century teaching skills and their implementation in physics learning.	Assignment 1 Lecturer Summary on 21st century teaching skills
CLO 2 Examine the display of opening and closing skills in physics learning.	Assignment 2 Making lesson plans refers to opening and closing skills
CLO 3 Reviewing the display of questioning skills in physics learning.	Assignment 3 Making lesson plans referring to questioning skills
CLO 4 Reviewing the display of reinforcement skills in physics learning.	Assignment 4 Making lesson plans referring to the skill of providing reinforcement
CLO 5 Reviewing the display of skills to make variations in physics learning	Assignment 5 Making lesson plans refers to opening and closing skills
CLO 6 Reviewing the display of explaining skills in physics learning.	Assignment 6 Making lesson plans refers to the skill of explaining
CLO 7 Reviewing the display of skills in guiding group discussions in physics learning.	Assignment 7 Making lesson plans referring to the skills of guiding group discussions
CLO 8	Assignment 8

Page

Program Learning Outcomes (PLO)	PLO 5 Able to implement pedagogical content knowledge technology (TPACK) in promoting, implementing, and evaluating physics learning.
Course Learning Outcomes (CLOs)	
Examine the display of classroom management skills in physics learning.	Making lesson plans refers to classroom management skills
CLO 9 Review the display of skills in conducting individual and small group approaches in classical learning.	Project 1 Making lesson plan tools referring to the skills of conducting individual and small group approaches in classical learning
CLO 10 Put the results of the study of the eight teaching skills into a micro lesson plan.	Project 2 Making lesson plan devices refers to teaching skills in micro learning plans.
CLO 11	Project 3 Making lesson plan devices refers to teaching skills in peer teaching practice.
Implement the eight teaching skills in peer teaching practice.	

Page4

Form of Assessment

Assignment25\%
Project55\%
Midterm 10\%
Exam
Final
Test10
Total100\%

Outcome Assessment

No.	Name	Assignment $1-8$	Project 1	Project 2	Project 3	UTS	Final Test	Final Score	Grade
	1 I A	80 ı	851	851	77	65	80 ı	79.78	B+
	2 1 B	82 1	861	861	72	76	85	81.33	A-
	3 C	84	88 '	831	72	75	88	81.85	A-
	$4{ }_{1}^{1} \mathrm{D}$	84	88	85	82	88	85	85.05	A
	51 E	86^{1}	881	80^{1}	72	65	871	80.70	A-
	61 F	88 ı	86 ו	82 ı	72	78	86	82.40	A-
	7 : G	82 1	861	84 !	77	80	80 !	81.78	A-
	$8{ }^{1} \mathrm{H}$	84 !	87	851	87	82	85 !	85.18	A
	9 I	85	88	87	82	84	88	85.57	A
	$10: \mathrm{J}$	88	89	851	77	85	80	84.52	A-
	11 K	88	901	86	72	85	85	84.47	A-
	12 ı L	82 ।	90 !	88 I	72	90	85 ।	83.83	A-
	$13^{1} \mathrm{M}$	83 1	85 1	90^{1}	87	78	88 !	85.38	A
	$14{ }^{1} \mathrm{~N}$	83 !	80 !	88	75	90	90 !	83.30	A-
	$15: \mathrm{O}$	81	851	85	72	85	90	82.12	A-
	$16^{1} \mathrm{P}$	85	87	80	72	87	90	82.77	A-

Pag 5

No.	Name	Assignment $1-8$	Project 1	Project 2	Project 3	UTS		Final Test	Final Score	Grade
	Q	78	861	76 I	72		671	88 I	77.90	B+
	R	86	871	67	72		88	851	80.23	A-
	S	78	88^{1}	781	82		901	901	82.97	A-
	T	82	851	741	72		851	88	80.15	A-
	U	83	861	77 1	77		80 I	90 ı	81.75	A-
	V	85	87 I	251	87 I		851	88 I	75.03	B+
	W	88	88 1	$10^{\text {1 }}$	87		80 1	88 1	72.72	B
	X	82	90^{1}	78 1	72		751	84 !	80.40	A-
		84	90^{1}	82^{1}	72		751	821	81.43	A-
	Z	85	871	50 I	87		75	88 ।	78.62	B+
	AA	88	88 !	77	72		80 1	90 !	82.45	A-
	AB	78	86 '	50 '	87		70 1	88 1	76.18	B+
		76	851	281	87		651	861	70.77	B
		75	84	75	72		65	881	76.40	B+
		81	80^{1}	80^{1}	82		601	90^{1}	79.62	B+
		83	851	891	72		74	87	81.95	A-
	AG	82	861	851	72		721	861	80.85	A-
		82	88 '	78	87		60 1	88 -	81.68	A-
		62	901	87	45		75	88	72.50	B
	AJ	82	90^{1}	751	72		70	85	79.45	B+
	AK	80	90^{1}	751	72		771	881	79.95	B+
	AL	82	88 !	75 1	77		78 1	851	80.80	A-

Calculation of Weight per PLO

		Weight per PLO	Total	Total Weight
Form of Assessment	Weight	PLO 5		
Assignment	0.25	1.0	1.0	0.25
Project	0.55	1.0	1.0	0.55
Midterm Exam	0.10	1.0	1.0	0.10
Final Test	0.10	1.0	1.0	0.10
	1.00		1.00	

PLO Calculation Example

No.	Name	Assignment $1-8$	Project 1	Project 2	Project 3	Midterm Exam	Final Test	Final Score	Class
9	I	85	88	87	82	84	88	85.57	A

Project student with name I $=85.67$

No.	Name	PLO 5
9	I	$(85 * 0.25+85.67 * 0.55+84 * 0.1+88 * 0.1) / 1.00$ $=85.57$

PLO Assessment Rubric

PLO	Performance Criteria	Very Good (E)	Good (G)	Satisfactory (S)	Failed (F)
5	Involves math, computation, and measurement protocols to solve physics problems.	Engage math, computation and measurement protocols to solve physics with a minimum score of 80.	Engage math, computation, and measurement protocols to solve physics with a score of at least 70 and less than 80.	Engage math, computation, and measurement protocols to solve physics with a score of at least 55 and less than 70.	Involves math, computation, and measurement protocols to solve physics with a score of less than 55.

Example of PLO Predicate for Each Student

No.	Name	Assignment	Project	Midterm Exam	Final Test	PLO 5
9	I	85	85.67	84	88	85.57 Very good

PLO Predicate for All Students

No.		Name	Assignment	Project 1	Project 2	Project 3	UTS		Final Test	Final Score	Class	PLO SCORE 5	$\begin{aligned} & \hline \text { PLO } \\ & \text { PREDICTION } \end{aligned}$ 5
	1		80	85 !	85 !	77 !		65	80 !	79.78	B+	79.78	G
	2		82 !	86 !	86 !	72 !		76	85	81.33	A-	81.33	E
	31		84 !	88 !	83 !	72 !		75	88 !	81.85	A-	81.85	E
	4		84	88	85	82		88	85	85.05	A	85.05	E
	5		86	88	80 '	72 1		65	87 !	80.70	A-	80.70	E
	61		88	86	82 '	72 '		78	86	82.40	A-	82.40	E
	7		82	86	84	77		80	80	81.78	A-	81.78	E
	8		84	87	85	87		82	85	85.18	A	85.18	E
	9		85	88	87 '	82		84	88 '	85.57	A	85.57	E
	10		88	89	85	77 !		85	80 !	84.52	A-	84.52	E
	11		88	901	86	72		85	85	84.47	A-	84.47	E
	12		82 !	90 !	88	72 !		901	85	83.83	A-	83.83	E
	13		83 '	85 '	90 '	87 !		78	88	85.38	A	85.38	E
	14 !		83 !	80 !	88 !	75		$90!$	90 !	83.30	A-	83.30	E
	15		81	85	85	72		85	90 1	82.12	A-	82.12	E
	16 !		85 !	87 !	80 !	72 !		87 !	90 !	82.77	A-	82.77	E
	17 '		78 1	86^{\prime}	761	72 '		67 !	88 1	77.90	B+	77.90	G

Percentage of PLO Achievement

	Predicate	PLO 5
$\%$	E	68.42
$\%$	G	31.58
$\%$	S	0.00
$\%$	F	0.00

Percentage of PLO Achievement in Teaching Skills

Achievement Percentage of PLO Teaching Skills

Attachment

Assignment-1	Lecturer Summary on 21st century teaching skills
Assignment-2	Making lesson plans refers to opening and closing skills
Assignment-3	Making lesson plans referring to questioning skills
Assignment-4	Making lesson plans referring to the skill of providing reinforcement
Assignment-5	Making lesson plans refers to opening and closing skills
Assignment-6	Making lesson plans refers to the skill of explaining
Assignment-7	Making lesson plans referring to the skills of guiding group discussions
Assignment-8	Making lesson plans refers to classroom management skills
Project-1	Making lesson plan tools referring to the skills of conducting individual and small group approaches in classical learning
Project-2	Making lesson plan devices refers to teaching skills in micro learning plans.
Project-3	Making lesson plan devices refers to teaching skills in peer teaching practice.

Pagel 1

Assessment for Assignment

No.	Indicator	Weight (\%)	Score			
			0	1	2	3
1	Learning objectives	10				
2	Conformity with syllabus	10				
3	Clarity of lesson plan identity	10				
4	Depth and accuracy of material	25				
5	Adequacy of media sources and teaching materials	25				
6	Accuracy of the form of assessment instruments	20				

Assignment Value $=\frac{\text { Ebobot } \times \text { skor }}{3}$

ASSESSMENT FOR TEAM PROJECTS

No.	Indicator	Weight (\%)	Score			
			1	2	3	4
Preparation Stage						
1	RPP	5				
2	Teaching Materials and Media	5				
Implementation Stage						
1	Attitude	5				
2	21st century skills	5				
3	8 Teaching Skills	10				
4	Material Mastery	10				
Final Stage						
1	Assessment	5				
2	Assessment Rubric	20				

Project Value $=\frac{\sum \text { Weights } \times \text { Skor }}{4}$

Building Fiture leaders	MINISTRY OF RESEARCH AND HIGHER EDUCATION JAKARTA STATE UNIVERSITY FACULTY OF MIPA PHYSICS EDUCATION STUDY PROGRAM MIDTERM EXAM TEACHING SKILLS (3 CREDITS)	Date	June 15, 2023
		Time	100 minutes
		Allowed d	Open book, Scientific Calculator
		Lecturer	B. Heru Iswanto, M.Si Handjoko Permana, M.Si Dewi Muliyati, M.Sc
Work Instructions:			
- Do the questions manually on the answer sheet. - Write down your name, NIM, course, and lecturer. - Do the questions using a ballpoint pen.		- FOR THE GROUP OF OBJECTIVE QUESTIONS, CHOOSE ONE ANSWER THAT YOU CONSIDER THE MOST CORRECT AND CROSS THE LETTER OF CHOICE ON THE ANSWER SHEET PROVIDED. - ANSWER SHEETS MUST NOT BE OVERWRITTEN WITH LIQUID PROOFREADERS SUCH AS TIP-EX.	

OBJECTIVE QUESTIONS

1. According to David Ausubel, in receptive learning and discovery learning, meaningful learning can occur if...
A. Students discover knowledge
B. Students memorize the material
C. Students conduct experiments in the lab
D. Students observe their learning environment
E. Students incorporate material into taught cognitive structures
2. The component of learning activities that aims to link prior knowledge with new material that students will learn is referred to as:
A. Exploration
B. Perception
C. Expository
D. Reflection
E. Conclusions
3. The statements relevant to the application of process skills in Physics learning are:
(1) The nature of physics as a product, process, and value
(2) The essence of learning is the process of teaching students
(1) The nature of educating students is for the future
(2) The nature of learning is the process of actively acquiring knowledge

You think the correct statement is:
A. 1 and 2
B. 2 and 3
C. 3 and 4
D. 4 only
4. Some implications of constructivism for learning practices in schools are:
(1) Teaching is helping students learn
(2) Learning is the process of making meaning of new information
(3) Learning is more emphasized on the process rather than the end result
(4) Teaching is the transfer of knowledge from teacher to student

You think the correct statement is:
A. 1 and 2
B. 2 and 3
C. 3 and 4
D. 4 only
5. One of the correct formulation of competency achievement indicators for GLBB subject matter is:
A. Understand the concept of GLBB and its application in everyday life
B. Determine displacement based on a graph of velocity as a function of time in GLBB
C. Analyze graphs of velocity as a function of time and position as a function of time for GLBB
D. Through discussion, students can explain the characteristics of GLBB based on the graph.
E. Understand the relationship between displacement, velocity and acceleration for GLBB
6. Class X material on KD 3.3. It is stated that "Analyzing the magnitudes of physics in straight motion with constant speed and straight motion with constant acceleration. The coverage of the subject matter in accordance with the KD is:
(1) GLB
(2) Free Fall Motion
(3) Vertical Upward Motion
(4) Parabolic Motion
A. 1 and 2
B. 2 and 3
C. 3 and 4
D. 4 only
7. Physics learning that educates is conceptualized as learning that...
A. Emphasizing instructional impact with the Tut Wuri Handayani principle
B. Contain and generate instructional impact and character strengthening
C. Using science, active, creative, effective, fun and innovative (PAKEMI) approach
D. Contains the nature of science as a process, product and value
8. The core activities of learning include exploration, elaboration and confirmation. One example of teacher activity in elaboration is...
A. Involve students in seeking broad and deep information about the topic/theme of the material to be studied.
B. Facilitate interaction between students, between students and teachers, the environment and other learning resources.
C. Provide opportunities for students to think, analyze, solve problems and act without fear.
D. Providing positive feedback and reinforcement in the form of oral, written, gestures, and gifts to student successes.
E. Formulate a concept with students after students have studied and analyzed the results of observation activities.
9. The core activities of learning include exploration, elaboration and confirmation. One example of teacher activity in exploration is...
A. Involve students in seeking broad and deep information about the topic/theme of the material to be learned.
B. Facilitate interaction between students, between students and teachers, the environment and other learning resources.
C. Provide opportunities for students to think, analyze, solve problems and act without fear.
D. Providing positive feedback and reinforcement in the form of oral, written, gestures, and gifts to student successes.
E. Formulate a concept with students after students have reviewed and analyzed the results of observation activities.
10. The core activities of learning include exploration, elaboration and confirmation. One example of a teacher's activity in confirmation is...
A. Involve students in seeking broad and deep information about the topic/theme of the material to be learned.
B. Facilitate interaction between students, between students and teachers, the environment and other learning resources.
C. Provide opportunities for students to think, analyze, solve problems and act without fear
D. Providing positive feedback and reinforcement in the form of oral, written, gestures, and gifts to student successes.
E. Formulate a concept with students after students have reviewed and analyzed the results of observation activities.
11. There are several types of teaching materials that can be developed by teachers in preparing their learning tools. Included in the teaching materials are....
A. Interactive learning multimedia
B. Audio, video, and movie compact disks
C. Audio cassettes, radios, vinyl records, and compact disks
D. Hand outs, books, modules, posters, brochures, LKS, photos or pictures
E. Video only
12. Professionally, teachers must have the courage to make decisions to modify the learning activities that have been prepared in the lesson plan. The decision can be made after the teacher gets feedback from the activity:
A. Perception
B. Exploration and elaboration
C. Confirmation and reflection
D. Initial concept exploration
E. Elaboration and confirmation
13. One of the principles of assessing student learning outcomes at the primary and secondary education levels is validity. This means:
A. Assessment is based on data that reflects the ability being measured.
B. Assessment covers all aspects of competence using a variety of appropriate assessment techniques
C. Assessment is an integral component of learning activities.
D. Assessment can be accounted for, both in terms of techniques, procedures, and results
E. Assessment is carried out with valid and reliable assessment tools
14. The components of the syllabus and lesson plans used in the development of student learning outcomes assessment instruments are
A. Core Competencies
B. Learning Indicators
C. Learning Activities
D. Competency Standard
E. Learning Objectives
15. There are several forms of questions used in a competency-based assessment system. One form of test question that is suitable for measuring a person's ability to perform certain tasks such as laboratory practice is:
A. Portfolio
B. Short description
C. Multiple choice
D. Performen
E. Structured essay
16. One example of the correct formulation of learning objectives for the subject matter of Archimedes' law is....
A. Through simple experiments and discussions, students can apply Archimedes' law to solve everyday problems related to static fluid.
B. After conducting a simple experiment, learners can understand Archimedes' law and its application in everyday life.
C. Investigate the factors that affect the magnitude of Archimedes' force and its application in everyday life.
D. Conduct an experiment on Archimedes' law to be able to explain floating, hovering and sinking objects.
E. After hearing the teacher's explanation, learners calculate the volume of objects immersed in liquid.
17. Educative physics learning is conceptualized as learning that...
A. Contains and generates instructional impact as well as character strengthening
B. Easy, fun, and enjoyable (GASING)
C. Active, innovative, creative, and fun
D. Implementing the nature of science as a process, product, and value
E. Learning that must take place in the classroom and laboratory
18. The correct statement regarding the refinement of the 2013 curriculum formulation mindset is....
(1) The SKLs are derived from the needs
(2) Content Standards are derived from the SKL through subject-based KI.
(3) All subjects must contribute to the formation of attitudes, skills and knowledge and are bound by core competencies in each class.
(4) Subjects are derived from the competencies to be achieved. In your opinion, the correct statement is....
A. 1 and 2
B. 2 and 3
C. 3 and 4
D. 2,3, and 4
E. 3only
19. One of the principles of the assessment approach in the 2013 curriculum is accountability, meaning...
A. Assessment by educators is carried out in a planned manner, integrated with learning activities, and sustainable.
B. Assessment covers all aspects of competence using a variety of appropriate assessment techniques
C. Assessment with instruments that are in line with learning objectives and materials
D. Assessments can be accounted for internally and externally to the school in terms of techniques, procedures, and results.
E. Assessment that is based on standards and not influenced by the subjectivity of the assessor.
20. Focusing learners' attention on the material to be taught, by showing interesting objects, providing illustrations, reading news in newspapers, showing animated slides, natural phenomena, social phenomena, or others is an introductory step in learning at the ... stage.
A. Providing references
B. Apperception
C. Motivation
D. Orientation
E. E. Attracts students' attention
21. The statement that corresponds to the purpose of implementing apperception activities in every lesson is....
A. Prepare students to receive the learning that will be done on that day
B. Knowing the new knowledge that learners already have
C. Motivate learners to be ready to start learning
D. Constructing new knowledge relevant to students' prior knowledge
E. Review learners' prior knowledge related to new knowledge
22. The following are some of the teacher's activities in carrying out learning in the classroom
(1) Adapt subject matter to learners' learning pace and ability
(2) Encourage and respect learners to ask questions and express opinions
(3) Adjust learners' seating arrangements to the purpose and characteristics of the learning process
(4) The teacher provides reinforcement and feedback on students' responses and learning outcomes during the learning process.
In your opinion, statements that include classroom management activities are....
A. 1 and 2
B. 2 and 3
C. 3 and 4
D. 2, 3, and 4
E. 3 only
23. One learner asked about how the water tap works so that it can close the flow of water in the plumbing. Another learner asked how a tsunami earthquake occurs, and another learner asked how the days of the month are always different. These student questions provide an indicator that students...
A. Caring about everyday physics problems
B. Not understanding the previous learning material
C. Critical of physics problems encountered
D. Objectively look at physics problems
E. Skeptical of answers from peers
24. In the implementation of the 2006 curriculum, Active, Creative, Innovative and Fun Learning (PAIKEM) is highly recommended because...
A. Creativity in the application of physics concepts will emerge if students are under pressure to understand physics concepts.
B. Physics material has more cognitive aspects
C. Physics is a part of science learning to enhance students' creativity
D. There is a relationship between learning motivation and learning outcomes of the material taught.
E. Each physics material has its own characteristics and difficulty level.
25. A learner after asking about the lysatic current and getting an explanation from the teacher about the concept, he asks again about the concept of the origin of electric charge, about the current density, and so on related to what the teacher explained. The attitude of these students is the attitude of...
A. Objective
B. Honest
C. Creative
D. Skeptics
E. On
26. To overcome the limited number of tools and to make learning in accordance with the nature of science at the end of the semester the teacher conducts learning activities in the laboratory, the teacher prepares several experiments with different materials and topics and is carried out in rotation. This practicum process supports the learning strategy with a hands-on approach...
A. Verification
B. Reification
C. Exploration
D. Diskoveri
E. Inductive
27. Before starting the lesson on the law of conservation of energy, the teacher begins with a demonstration using a steam engine model to show the change of heat into motion. Such a teacher intends to address the following except....
A. In order for the concepts related to the law of conservation of energy that students understand, students are convinced that the law of conservation of energy is true.
B. When explaining the mathematical model, students recognized each role of the process symbol.
C. To raise students' interest in making a steam medin for pounding rice
D. To show the application of the material learned in everyday life
E. In order for the phenomenon of the law of conservation of energy to be listened to and imagined by students
F.
28. A teacher brought an old mineral water bottle, a straw, and small nails to make the oscillating motion of a straw pipe in water by weighting the bottom of the straw pipe with nails. Such a teacher utilizes...
A. Utilize the environment for learning resources to understand concepts
B. Used items become unique and valuable items with artistic value.
C. Students' skills to model fishing hook pennants
D. Technology products in the environment as learning resources
E. Used items as tools for the workshop program
29. When teaching atomic theory, teachers try to find computer-based learning models to explain atomic theory models. Such a teacher has tried and tried to...
A. Conduct ICT-based learning
B. Teaching material can be understood as a whole even in the form of synthesis
C. Following the trend of today's powerful learning models
D. Learners can recognize how to learn physics using computers
E. Learning is more real and less boring
30. In making physics worksheets, teachers generally assign presenting data in the form of graphs. The process skills that are trained to students are...
A. Summarize
B. Hypothesize
C. Fact finding
D. Communicating
E. Analyzing

MINISTRY OF EDUCATION, CULTURE, RESEARCH AND
 TECHNOLOGY
 JAKARTA STATE UNIVERSITY

FACULTY OF MATHEMATICS AND NATURAL SCIENCES
PHYSICS AND PHYSICS EDUCATION STUDY PROGRAMS
Campus A, Hasjim Asj'arie Building Rawamangun, East Jakarta 13220
Phone/Fax : (021) 4894909, E-mail: dekanfmipa@unj.ac.id, www.fmipa.unj.ac.id

MINUTES OF VERIFICATION OF TEST QUESTIONS

I, as the Coordinator of the Teaching Skills Course in the Physics Education S-1 Program, declare that there has been a discussion of the teaching skills measurement instrument between the Coordinator Lecturer and the Subject
Parallel:

1. Day and Date of Discussion: Tuesday, May 17, 2022
2. Course Content: Teaching Skills
3. Number of measurement instruments: 1 question

With the number of statement items: 7 items
4. Exam Time (Date, time, length of exam):

Adjusted to the study program course schedule
5. Coordination Meeting Participants:

No.	Lecturer Name		Signature
1	Prof. Dr. Nurudin, M.Ag (Microteaching Coordinator UNJ)	LP3M	
2	Dr. Firmanul Catur Wibowo, M. Pd		

The measurement instrument has been validated, verified and in accordance with the competency objectives of the course and it has also been checked that the load / time allocation for the questions given is in accordance with the level of the questions given.
The linkage of each exam question with course competencies can be seen in the following table:

No.	Course Competencies (CPMK)	Exam Question Number Related to the Competency
1	Opening and closing skills for physics learning	$1,7,8$
2	Questioning skills in physics learning	6,8
3	Reinforcement skills in physics learning	3,5
4	Variation skills in physics learning	$2,4,5$
5	Explanation skills in physics learning	3,5
6	Skills in leading group discussions in physics learning	3
7	Classroom management skills in physics learning	2,4
8	Skills in conducting personal and small group approaches in classical learning in physics learning	2,4

Notes:
The questions are in accordance with the CPMK with a moderate level of difficulty.

Jakarta, May 18, 2022
Physics Education Department

Dr. Hadi Nasbey, M.Si
NIDN. 0010057704

MINISTRY OF EDUCATION, CULTURE, RESEARCH AND TECHNOLOGY JAKARTA STATE UNIVERSITY
FACULTY OF MATHEMATICS AND NATURAL SCIENCES
PHYSICS AND PHYSICS EDUCATION STUDY PROGRAMS
Campus A, Hasjim Asj'arie Building Rawamangun, East Jakarta 13220 Phone/Fax : (021) 4894909, E-mail: dekanfmipa@unj.ac.id, www.fmipa.unj.ac.id

TEACHING SKILLS ASSESSMENT FORMAT

 IN MICROTEACHING PRACTICE| No. | Activity Aspect | Value | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1 | 2 | 3 | 4 |
| 1. | Ability to open lectures
 Descriptors:
 a. Attracts students' attention
 b. Generates motivation
 c. Give reference to learning materials that will be presented
 d. Make links between old and new learning materials | | | | |
| 2. | Attitude in the learning process
 Descriptors:
 a. Voice clarity
 b. Body movements do not distract students' attention
 c. Enthusiasm of appearance mimic
 d. Place position mobility | | | | |
| 3. | Mastery of learning materials (teaching materials)
 Descriptors:
 a. Learning materials are presented according to the planned steps
 b. Clarity in explaining the material
 c. Clarity in providing examples
 d. Reflects breadth of insight | | | | |
| 4. | Learning process
 Descriptors:
 a. Appropriateness of the use of strategies/methods with the subject matter
 b. Presentation of learning materials relevant to TPK
 c. Enthusiastic in responding and using responses
 d. Accuracy in time utilization | | | | |
| 5. | Using media
 Descriptors:
 a. Pay attention to the principles of using media types
 b. Accuracy when using
 c. Skills in operationalizing | | | | |

MINISTRY OF EDUCATION, CULTURE, RESEARCH AND TECHNOLOGY JAKARTA STATE UNIVERSITY
FACULTY OF MATHEMATICS AND NATURAL SCIENCES
PHYSICS AND PHYSICS EDUCATION STUDY PROGRAMS
Campus A, Hasjim Asj'arie Building Rawamangun, East Jakarta 13220
Phone/Fax : (021) 4894909, E-mail: dekanfmipa@unj.ac.id, www.fmipa.unj.ac.id

| | d. Help improve the learning process | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 6. | Evaluation
 Descriptors:
 a. Use oral assessment relevant to the TPK
 b. Using writing assessment relevant to the TPK
 c. Uses various types of assessments relevant to the
 TPK
 d. Carry out the assessment in accordance with
 what is written on the SAP | | | |
| 7. | Ability to close the lecture
 Descriptors:
 a. Review
 b. Providing opportunities to ask questions
 c. Assign co-curricular activities
 d. Inform the next material | | | |

