

MINISTRY EDUCATION, CULTURE, RESEARCH AND TECHNOLOGY UNIVERSITAS NEGERI JAKARTA

FACULTY MATHEMATICS AND KNOWLEDGE KNOWLEDGE NATURAL

MAJOR PHYSICS & EDUCATION PHYSICS

Campus A UNJ Rawamangun, G-d. Hasjim Asj'arie Lt. 5 Jl. Rawamangun Muka No. 1 Jakarta 13220 Tel. 021-29266285/29266284

EXAM MIDDLE SEMESTER 118	
Wave	
Date and time	Wednesday, 29 March 2023
O'clock	08.00-09.40 WIB
Study Program	Physics And Education Physics
Characteristic Exam	Closed Book
Lecturer	Dr. Esmar Budi, MT,
	Riser Fahdiran, M.Si.,
	Dr. Ivan S, M.Sc
	Dr. Widyaningrum, M.Sc

Instructions: Work on it sequentially, using pen on paper folio.

1. Is known oscillator harmonious simple form mass-spring like following:

At time t = 0, the mass m experiences a deviation of 0.04 m from the equilibrium point. If speed oscillation is 0.5 m/s and M = 0.8kg, k = 180 N, determine function the oscillation.

2. If is known function propagating waves on rope with propagation speed 1m/s is:

$$y = A \sin k (x - vt)$$

Draw it graph of the y wave function to x on moment t = 0, t = 1 s and T = 2 s.

- 3. Linear polarized waves with amplitude Ao, direction of propagation along a path in a plane XY, and the direction of vibration is also in the XY plane. If the angle formed by the wave propagates the is 45° from the X axis, then
 - a) Make it illustration
 - b) Determine amplitude, And
 - c) Determine equality wave
- 4. It is known that the pulse wave is expressed by the following function y(x,t), determine the speed and direction propagation of the wave.

a)
$$y(x,t) = 2(ax-bt)^2$$

b)
$$y(x,t) = \exp i(x-3t)$$

c)
$$y(x,t) = \frac{b^3}{b^2 + (2x - ut)}$$

Happy Work